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Abstract

India relies on groundwater irrigation to produce staple grain crops that provide over half of the 

calories consumed by its over 1.3 billion people. While groundwater has helped India achieve 

grain self-sufficiency, aquifers have been overexploited across much of the country and its 

implications for crop production are unclear. To understand how groundwater depletion affects 

staple grain (wheat, rice, maize, pearl millet, and sorghum) production in India, we ran district-

level panel regressions using agricultural census, groundwater observation, and gridded weather 

datasets over a ten-year study period (2004-2013). We find that nationally, declining 
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groundwater levels are associated with significant reductions in yield, cropped area, and 

production for wheat, rice, and maize in the winter season. Despite the negative impacts of 

groundwater depletion on crop production, we find little evidence that farmers are switching 

from planting more water-intensive to less water-intensive grains. Using profit-based decision 

modeling, we further investigated the effects of agricultural energy prices on crop choice in the 

monsoon season across Haryana and Punjab, which are responsible for over 60% of India’s grain 

production, have high electricity subsidies, and have rapidly depleting water tables. We find that 

eliminating energy subsidies for groundwater pumping would likely not encourage farmers to 

switch to planting less water-intensive crops, though sensitivity analyses suggest that it could 

encourage the adoption of increased water conservation efforts. In summary, our analyses reveal 

a discernable impact of groundwater depletion on crop production in India and suggest that 

reducing or removing energy subsidies may largely affect water use but not crop choice. 

Keywords: groundwater irrigation, yield decline, crop production, crop decisions

1 Introduction

Groundwater is a critical source of irrigation but is becoming rapidly depleted in many 

regions across the globe. This is particularly true in India, where groundwater provides over 60% 

of irrigation (Siebert et al., 2010, Saha et al., 2018), and where water levels have dropped by 

more than eight meters on average since the 1980s (Sekhri, 2012, Aeschbach-Hertig and Gleeson, 

2012, Rodell et al., 2009). This is because at this time groundwater pumps were introduced to 

increase groundwater withdrawal capacities and, since then, the number of groundwater 

structures has more than quadrupled to over 20 million (Mukherji et al. 2013). Coupled with 
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policies that support highly subsidized, unmetered, and unregulated electricity, farmers have 

largely been able to withdraw groundwater on-demand in many parts of India. The rise of 

groundwater irrigation greatly contributed to large food production gains, by increasing 

production in the dry season and reducing the sensitivity of crops to weather variability (Zaveri 

and Lobell, 2019, Fishman, 2018). Groundwater irrigation is critical for India’s food security, 

and its importance will likely only increase over the coming decades due to climate change. 

Given the magnitude of India’s groundwater depletion problem, it is important to 

understand the consequences of groundwater depletion for the country’s food production. Studies 

suggest that groundwater depletion has already reduced crop production (Sekhri, 2013) and, in 

the future, will further reduce cropping intensity and production (Jain et al., 2021, Zaveri et al., 

2016), and amplify the negative effects of climate change (Tack et al., 2017, Zaveri and Lobell, 

2019). While these studies provide important insights into the impacts of groundwater depletion 

on agricultural production, they have focused only on a single crop type, single growing season, 

or an aggregate class of multiple crops (e.g., food grains). To date, the effects of groundwater 

depletion on the production of a suite of individual food crops with variable water requirements 

are not well understood. Yet understanding the effects of groundwater depletion on individual 

food crops is important because it can provide insight into whether there are specific crops that 

are most at risk and in need of interventions or policies to maintain production. In addition, 

previous studies largely focused on the impacts of groundwater depletion on production and did 

not examine whether farmers change crop planting areas in response to falling water tables. Such 

information can reveal if farmers are adapting to groundwater depletion by switching to planting 

less water-intensive crops. 

In this study, we fill these knowledge gaps by examining the impact of groundwater 
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depletion on the production of India’s main staple grain crops, rice, wheat, maize, pearl millet, 

and sorghum, which provide over 50% of household calories (Rampal, 2018). We use district-

level datasets on crop yield, crop area, groundwater depths, and weather from 2004-2013 in 

fixed-effect panel regression models to examine the impact of groundwater depletion on (1) 

grain yields, (2) grain production, and (3) the area planted under grain crops. In addition, we 

examine whether groundwater depletion results in farmers switching to less water-intensive 

crops by identifying whether (4) the proportion of area under each grain crop changes in 

response to falling water tables. Finally, we examine (5) whether increasing the price of energy 

incentivizes farmers to plant less water-intensive crops in Punjab and Haryana, two states with 

high rates of groundwater depletion and high levels of energy subsidies. This study provides 

important implications for India’s future food security in the face of groundwater depletion. 

2 Methods

2.1 Data Collection and Collation

We used several datasets in this study, including crop production, weather, groundwater, 

price, and cost data (Table S1). We obtained district-level crop production information, including 

seasonal yield, seasonal cropped area, and annual harvest price for each crop from 1997-2015 

from International Crops Research Institute for the Semi-Arid Tropics (ICRISAT, 

Supplementary Methods). The crops included winter wheat, winter and monsoon rice, winter and 

monsoon maize, winter and monsoon sorghum, and monsoon pearl millet, as these are India’s 

major staple grains (Hazra, 2001) (Figure 1A). We derived district-level pre-monsoon (May) and 

pre-winter (November) groundwater levels from 2004-2013 using data (Figure 1B) from the 

Central Groundwater Board (CGWB, see Supplementary Methods). We obtained rainfall data 

from NASA’s Tropical Rainfall Measuring Mission (Huffman et al., 2015, Huffman, 1997) and 

temperature data from the Climatic Research Unit (Harris et al., 2014), and calculated seasonal 

total rainfall and mean temperature from 2004 to 2013 at the district scale (Supplementary 
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Methods). Finally, we obtained fixed costs for principal crops for Punjab and Haryana from the 

Directorate of Economics and Statistics (Table S2). 

Figure 1. Spatial distribution of district level crop production and groundwater table depth in 

India. Maps display A) 1997-2014 mean district level crop production in tons for each of five 

staple crops (winter wheat, winter and monsoon rice, winter and monsoon maize, winter and 

monsoon sorghum, and monsoon pearl millet) and B) 2004-2013 mean district level preseason 

groundwater table (m). Polygons in red in panel B) show the states of Punjab (top) and Haryana 

(bottom).
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2.2 Fixed-effect Panel Regressions

We used fixed-effect panel regression models to identify whether groundwater depletion was 

associated with changes in 1) yield, 2) production, 3) area, and 4) proportional area for each of 

the five main grain crops (i.e., rice, wheat, maize, sorghum, and pearl millet) during the monsoon 

and winter seasons. We ran all regressions (Equations 1-8) at the national scale and for the 

region where we conducted our subsidy analysis, Punjab and Haryana. Regression results are 

reported for each crop that had yearly observations for at least 50 unique districts (40 for Punjab 

and Haryana regressions due to smaller sample size). For the national level regressions, we ran 

two robustness checks. First, we restricted our analyses to only districts that had more than four 

wells available to ensure that differences in well data availability were not affecting our results. 

Second, we used state*linear time trends instead of a year fixed effect to see whether our results 

changed based on the way we specified time.

2.2.1 Yield and Production Regressions

We estimated the association between preseason groundwater level depth with yield 

(Equations 1-2) and production (Equations 3-4) for all crops. We hypothesized that yield and 

production will decline as groundwater tables fall, due to reduced access to groundwater for 

irrigation. We estimate the following regression for each crop separately:

Log(WinterYieldiy) ~ β0 +  β1GWLiy +  β2MonsoonPiy +  β3WinterPiy +  β4WinterTiy +  Fei +  Fey +  εiy (1)

Log(MonsoonYieldiy) ~ β0 +  β1GWLiy +  β2MonsoonPiy +  β3MonsoonTiy +  Fei +  Fey +  εiy (2)

Log(WinterCPiy) ~ β0 +  β1GWLiy +  β2MonsoonPiy +  β3WinterPiy +  β4WinterTiy +  Fei +  Fey + εiy (3)

Log(MonsoonCPiy) ~ β0 +  β1GWLiy +  β2MonsoonPiy +  β3MonsoonTiy +  Fei +  Fey +  εiy (4)
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where WinterYieldiy (WinterCPiy) and MonsoonYieldiy (MonsoonCPiy) represent crop-specific 

mean yields (total production) for a district i at a growing season year y; GWLiy represents 

preseason (May for the monsoon season and November for the winter season) mean district-level 

well depth in meters for year y, MonsoonPiy and WinterPiy represent total monsoon and winter 

rainfall (mm), respectively; WinterTiy and MonsoonTiy represent seasonal mean temperature for 

the winter and monsoon season, respectively; Fey and Fei represent year and district fixed effects, 

respectively.

2.2.2 Area and Proportional Area Regressions

We examined the association between preseason groundwater level depth with area 

(Equations 5 and 6) and proportional area (Equations 7 and 8) for all crops. The proportional 

area was calculated as the proportion of total cropped area (in %) within the same growing 

season that was planted under a particular crop. In both regressions, we included total monsoon 

rainfall as a control variable as monsoon rainfall serves as an important means to irrigate crops. 

Given that farmers make decisions about what crops to plant prior to the start of the growing 

season, we included monsoon rainfall from the previous year in all monsoon regressions, as it is 

unclear how same-season rainfall could alter farmer decision-making at the start of the season. 

We hypothesized that falling groundwater tables will be associated with decreased area and 

proportional area under 1) water-intensive crops (e.g., rice) and 2) crops planted during the 

largely dry winter season (e.g., wheat).

Log(WCAiy) ~ β0 + β1GWLiy + β2MonsoonPiy + Fei + Fey + εiy (5)

Log(MCAiy) ~ β0 +  β1GWLiy + β2MonsoonPiy - 1 + Fei + Fey + εiy (6)
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PWCAiy ~ β0 + β1GWLiy + β2MonsoonPiy + Fei + Fey + εiy (7)

PMCAiy ~ β0 +  β1GWLiy + β2MonsoonPiy - 1 + Fei + Fey + εiy (8)

where WCAit and MCAit are total farmed area of each crop in thousands of hectares during the 

winter and monsoon seasons, respectively; PWCAit and PMCAit are proportional area of each 

crop in % during the winter and monsoon seasons, respectively. All other variables in Equations 

5-8 are the same as those outlined above for Equations 1-4, however, monsoon season at time y-

1 was used to examine the impact that previous season rainfall has on cropping decisions. 

2.3 Crop Choice Model

To better understand the impact of electricity subsidies, we modeled farmer crop choice 

based on crop yield, groundwater depth, and pumping cost under different energy price scenarios. 

We focused this analysis on the states of Punjab and Haryana, where over 93% of irrigated food 

grains are produced (GoI, 2018), energy is heavily subsidized, and the highest rates of 

groundwater depletion occur (Rodell et al. 2009). We also focused on the monsoon season as 

most farmers in these states plant water-intensive rice during the monsoon season though 

alternative lower-water use grains exist, such as maize, pearl millet, and sorghum. However, in 

the winter season, most farmers plant wheat and few alternative grain crops exist that would use 

less water (Halli et al. 2016). 

Our crop choice model assumes that farmers are profit-maximizing and will choose to plant 

the most profitable crop. The decisions are made at a district level and are based on 2004-2013 
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mean profit for each crop (Profitcrop), which is calculated by subtracting the cost to grow the crop 

(Costcrop) from total revenue (Revenuecrop) earned for the crop per hectare (Equation 9): 

Profitcrop =  Revenuecrop ―  Costcrop (9)

Revenuecrop = Yieldcrop ∗  Pricecrop (10)

Costcrop = Pricewater +  FixedCostcrop ∗  Yieldcrop (11)

Revenue was calculated by multiplying district level mean yield (Yieldcrop; tons/ha) by 

district level mean price (Pricecrop) for each crop (Equation 10). Cost was calculated by adding 

the price of water (INR/hectare) to the fixed cost (Table S2) of planting per hectare (Equation 

11). The price of water (Pricewater: INR/ha) was calculated by multiplying the price of energy by 

the amount of energy required to pump water from a given depth (Equation 12).

Pricewater = Energycrop ∗  Priceenergy
 (12)

The energy (Kwh/ha) needed to pump water was modified and calculated from an equation 

created by Zhu et al. (2007) (Equation 13).

 Energycrop = (ϕ ∗  IWcrop ∗  Yieldcrop ∗ ℎ)/1000 (13)

ϕ = (γ ∗  ρ ∗  g)/1000 (14)

The coefficient  (Equation 14) is obtained by multiplying pumping efficiency (; between 

0.4 and 0.7) by the density of water ( = 1000 kg m-3) and the acceleration due to gravity (g = 9.8 

m s-2), which was taken as 0.6 following common values in the literature (Jagtap, 2013, Sant and 

Dixit, 1996). The groundwater depth (h, m) was calculated as the mean pre-monsoon 

groundwater depth per district.  IWcrop represents total water withdrawal for irrigation, which 
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includes both the amount of water used by the crops for biomass production (i.e, Yieldcrop) and 

those not used by the crops (or water lost during the process of irrigation). Following Jägermeyr 

et al. (2015),  IWcrop was derived as:

where Wcrop represents the actual irrigated water used by crops, which was estimated as the blue 

water footprint of crops (Mekonnen and Hoekstra, 2010, Rost et al., 2008) using values for each 

crop for the states of Punjab and Haryana (and all of India for supplemental analysis, Table S3) 

from Kayatz et al. (2019). Eb is the beneficiary water efficiency or the ratio of the total water 

consumed by the crops (transpiration) for biomass production to total water withdrawn or 

diverted for irrigation (Jensen, 2007, Jägermeyr et al., 2015, Seckler et al., 2003). Eb accounts for 

potential irrigated water lost in the system and reported values of Eb are typically lower for India 

and Southeast Asia (~30%), as these regions primarily use surface (flood) irrigation (Jägermeyr 

et al., 2015). We used a value of 29% (i.e., 0.29) for Eb, which is also the reported global mean Eb 

for surface irrigation (Jägermeyr et al., 2015). We also considered two additional scenarios 

assuming that irrigation for alternative crops is more efficient than rice by considering higher Eb 

values of 0.4 and 0.5 for these alternative crops. These values are based on the average of the 

global mean Eb reported for 1) surface and sprinkler irrigation and 2) surface, sprinkler, and drip 

irrigation, as reported by Jägermeyr et al. (2015).

We also performed a sensitivity analysis to understand which factors most influenced farmer 

crop choice. We used the Morris Method (Franczyk, 2019, Morris, 1991) to calculate the 

sensitivity of the model’s outcome to each input, including crop yields, crop prices, groundwater 

IWcrop =  Wcrop/Eb (15)
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depths, and energy prices under low (0-0.1 INR/kWh), mid (0.1-5.5 INR/kWh), high (5.5-11.71 

INR/kWh), and very high (11.71-17 INR/kWh) energy price scenarios (Supplementary Methods).

3 Results

3.1 Yield Fixed-effect Panel Regression

We find that nationally the preseason groundwater depth coefficient had a significant 

negative association with yield for several staple crops in the winter season, including wheat, rice, 

and maize, but no effect on monsoon season crops (Figure 2). The effect was negative but only 

marginally significant for winter sorghum. We find that nationally a 1 m decline in preseason 

groundwater depth was associated with a 1-3% decline in mean yields for winter crops (Table 

S4). The largest (i.e. ~ 3%) and smallest (i.e. ~ 1%) decline in mean yields were experienced by 

winter rice and winter wheat, respectively. When the regression models were run across districts 

within Punjab and Haryana only, we found no effect of groundwater depletion on winter wheat 

and monsoon rice yields (Table S5).
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Figure 2. Effects of groundwater depletion on yield at the national scale. The regression 
coefficients (β) are expressed as (exp (β) – 1) * 100 to approximate percent change in yield in 
response to a 1 m decline in the groundwater table. All regressions include district and year fixed 
effects. *, **, and *** indicate p values less than 0.1, 0.05, and 0.01, respectively. The number 

of observations ranges from 824 (winter sorghum regression) to 4044 (winter wheat regression) 
with data from 109 to 420 districts in India depending on the regression model. Error bars 
represent 95% confidence intervals derived as the exponentiated coefficient value ± 1.96 * 

standard error of the regression coefficient (Table S4).

With respect to climate variables, crop yields generally showed positive effects with rainfall 

and negative effects with temperature (Tables S4). Specifically, across most regressions, winter 

wheat, winter maize, winter sorghum, and monsoon rice had a significant positive association 

with monsoon rainfall and temperature was significantly negatively associated with yields for 

winter wheat, winter rice, winter maize, and monsoon millet. The associations between seasonal 

mean temperature and winter wheat yield and monsoon rice yield were consistent for Punjab and 
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Haryana, while the associations between monsoon rainfall and crop yield were insignificant 

(Table S5). 

3.2 Production Fixed-effect Panel Regression 

We find that nationally groundwater decline led to a reduction in winter crop production by 

4-8% per 1 m decline in groundwater tables (Figure 3, Table S6). However, the effect was 

mostly insignificant for the production of monsoon crops except for monsoon maize, for which a 

1 m decline in groundwater level was associated with a 1% reduction in crop production. 

Groundwater depletion was most associated with production losses for winter maize (-8% per 1 

m) and winter rice (-7% per 1 m). In Punjab and Haryana, groundwater depletion was not 

associated with winter wheat production and was marginally significant for monsoon rice (Table 

S5).  
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Figure 3. Effects of groundwater depletion on production (yield *area) at the national scale. The 
regression coefficients (β) are expressed as (exp(β) – 1) * 100 to approximate percent change in 
cropped area in response to a 1 m decline in the groundwater table. All regressions include 

district and year fixed effects. *, **, and *** indicate p values less than 0.1, 0.05, and 0.01, 

respectively. The number of observations ranges from 847 (winter sorghum regression) to 4056 

(winter wheat regression) with data from 110 to 401 districts in India depending on the 

regression model. Error bars represent 95% confidence intervals derived as the exponentiated 

coefficient value ± 1.96 * standard error of the regression coefficient (Table S6). 

Production of winter wheat, winter rice, monsoon rice, and monsoon millet were positively 

associated with monsoon rainfall and negatively associated with seasonal temperature, except for 

monsoon rice production which was positively associated with temperature (Table S6). Weather 

was not significantly associated with monsoon rice and winter wheat production in Punjab and 

Haryana (Table S5).
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3.3 Area Fixed-effect Panel Regression 

Nationally we found that deeper groundwater depths were significantly associated with 

reduced area under winter wheat, winter rice, winter maize, winter sorghum, and monsoon maize 

(Figure 4, Table S7). This negative effect was most pronounced for winter maize area (-5.8% per 

1 m), compared to a 2.7-3.5% reduction in area of other winter crops. The effect of groundwater 

depletion was relatively small and mostly insignificant for monsoon crop area, except for 

monsoon maize area (-2.2% per 1 m). In Punjab and Haryana, groundwater depletion was not 

associated with winter wheat area but was significantly associated with a reduction in area under 

monsoon rice (Table S5).  

Figure 4. Effects of groundwater depletion on area at the national scale. The regression 
coefficients (β) are expressed as (exp(β) – 1) * 100 to approximate percent change in cropped 
area in response to a 1 m decline in groundwater table. All regressions include district and year 

fixed effects. *, **, and *** indicate p values less than 0.1, 0.05, and 0.01, respectively. The 
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number of observations ranges from 847 (winter sorghum regression) to 4056 (winter wheat 

regression) with data from 110 to 401 districts in India depending on the regression model. Error 

bars represent 95% confidence intervals derived as the exponentiated coefficient value ± 1.96 * 

standard error of the regression coefficient (Table S7). 

We find that monsoon rainfall (either previous season or the previous year) was positively 

associated with area under winter wheat, winter rice, monsoon rice, and monsoon millet (Table 

S7) nationally. However, in Punjab and Haryana, monsoon rainfall was not associated with 

winter wheat and monsoon rice area (Table S5).

3.4 Proportional Area Fixed-effect Panel Regression 

We find that groundwater depletion was significantly associated with reductions in the 

proportional area of monsoon rice (Figure 5, Table S8), but the effects were very small (-0.21% 

per 1 m). Proportional winter maize and winter wheat area also decreased in response to 

groundwater depletion, but at a small level (< -0.2% per 1 m). In Punjab and Haryana, the effects 

of groundwater depletion on proportional area were not significant for winter wheat and winter 

rice and were marginally significant for monsoon rice (Table S5). 
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Figure 5. Effects of groundwater depletion on proportional area (%) at the national scale. All 

regressions include district and year fixed effects. *, **, and *** indicate p values less than 0.1, 

0.05, and 0.01, respectively. The number of observations ranges from 842 (winter sorghum 

regression) to 4056 (winter wheat regression) with data from 110 to 401 districts in India 

depending on the regression model. Error bars represent 95% confidence intervals derived as 

coefficient value ± 1.96 * standard error of the regression coefficient (Table S8). 

We find that rainfall from the previous season or year had a positive effect on proportional 

area under winter wheat and monsoon maize but a negative effect on proportional area under 

monsoon maize and monsoon sorghum (Table S8). In Punjab and Haryana, these effects were 

significantly positive for proportional area under winter wheat (~ 5 times greater than the effect 

at the national scale) but were insignificant for proportional area under monsoon rice (Table S5). 

For all regressions, we find that our robustness checks of subsetting for districts that have at least 

4 wells (Table S9-S12) and defining time as a linear trend (Tables S13-S16) did not change the 

direction and magnitude of our main results.
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3.5 Crop Choice Model

The crop choice model shows that changes in the price of energy can drive crop choice 

decisions (Figure 6). As the price of energy increases, farmers are more likely to switch from 

producing more water-intensive rice to producing less water-intensive maize or sorghum. 

Regardless of the price of energy, farmers are the least likely to switch to sorghum and pearl 

millet due to the higher cost associated with its production and lower yields and revenue. At the 

average subsidized price of energy in Punjab and Haryana (0.045 INR/kWh), our model suggests 

that farmers will plant rice in most districts (~83%) under all conditions when beneficiary 

irrigation efficiency from the alternative crops was similar or higher than that from rice. As the 

price of energy increases to the national average price of energy (5.15 INR/kWh), farmers in 

slightly more districts will switch to planting maize (~19%) and sorghum (~10%); however, rice 

will still remain the primary crop choice across most districts (~71%). Energy prices will have to 

increase substantially to 16 INR/kWh for farmers in approximately half of districts to switch 

away from planting rice. This energy cost, however, is likely unrealistic given that this price is 

over three times greater than the average cost of energy across the country. 
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Figure 6. Crop choice model outcomes. The graph depicts aggregated profit-based crop 

decisions as the percent of total districts (n = 42) in Punjab and Haryana that would plant rice, 

maize, pearl millet, or sorghum based on a given price of energy (x-axis). The black dotted line 

indicates the 2007-2013 average subsidized energy price (0.045 INR/Kwh) for agricultural use in 

Haryana and Punjab. The red dotted line indicates the national average price (5.15 INR/Kwh) of 

electricity for the same period. Panels a, b, and c consider beneficiary irrigation efficiency of 

0.29, 0.4, and 0.5, respectively, to account for nonconsumptive use of irrigation water by crops. 

We further studied the sensitivity of net profit to crop yields, crop prices, and groundwater 

depths under our current to very high energy price scenarios. We find that when energy prices 

are low (current prices, green bars), crop price and yield are much more important for decision-
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making, particularly the price and yield of rice (Figure 7). Crop decisions become more sensitive 

to the depth of water table and price of energy as the price of energy increases, with the 

importance of groundwater depth becoming more important than the price of rice in the high and 

very high energy price scenarios (black and yellow bars, respectively). The price of energy is 

largely less important than crop yield and price, especially for rice, which suggests that a cost of 

energy that is even higher than those proposed in our scenarios is needed to incentivize farmers 

to switch to planting less water-intensive crops.  

Figure 7. Morris method sensitivity analysis showing the relative importance of input variables 

in the crop choice model. The bar graphs depict importance based on modeled net profit in 
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response to input factors in Punjab and Haryana, between a) rice and maize, b) rice and pearl 

millet, and c) rice and sorghum. Results from the low, mid, high, and very energy price scenarios 

are in green, blue, black, and yellow, respectively. The error bars show the 95% confidence 

interval of the mean (mean + 1.96*standard error) based on 30 random simulations of the Morris 

method sensitivity analysis.

4 Discussion and Conclusion

Groundwater is a critical resource for agricultural production in India, helping to irrigate 

much of the nation’s staple crops (Dalin et al., 2017). Due to rapid overexploitation, groundwater 

reserves are becoming depleted in many regions across the country (Rodell et al., 2009, Shah, 

2009, Asoka et al., 2017). In our study, we examined the effects of groundwater depletion on 

agricultural production and crop planting decisions across India. Our findings suggest that 

groundwater depletion is already impacting crop yield, area, and production, but only in the 

largely dry winter season when groundwater is a primary source of irrigation and there is little 

additional rainfall to water crops. This is likely due to the increased effort and cost to pull water 

from deeper depths as water tables fall and the limited ability of other irrigation sources to water 

crops during the winter season. Our findings are consistent with previous studies that have 

shown reductions in area of water-intensive crops and winter crops (Sekhri, 2013, Moors et al., 

2011, Dar et al., 2020, Jain et al., 2021). Considering whether farmers adapt by switching to less 

water-intensive crops, we find that though the proportional area under water-intensive crops 

decreases as water tables fall, this level of decrease is small. This finding aligns with studies that 

show that Indian farmers have responded to falling water tables by increasing investment in high 
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capacity pumps as opposed to adopting water-saving cropping practices (Kaur and Vatta, 2015, 

Palanisami et al., 2015, Tripathi and Mishra, 2017). 

We find that the effect of groundwater depletion on agricultural production varies based on 

the growing season. Groundwater depletion mostly negatively impacts the yield, area, and 

production of all grain crops during the largely dry winter season when groundwater is the main 

and sometimes only source of irrigation. During the monsoon season, when alternative sources 

of water are available through rainfall and surface irrigation, groundwater depletion mostly does 

not affect the yield, area, and production of any grain crop, except for water-intensive rice; for 

rice, groundwater depletion is associated with small reductions in area and production. This may 

be because of the relatively high-water requirement of rice (Frenken and Gillet, 2012) including 

the need to maintain continuous seepage and percolation flows using ponded water (Bouman and 

Tuong, 2001), which may be a challenge in areas with low rainfall and deep groundwater tables. 

These results suggest that during the monsoon season, farmers are responding to falling 

groundwater tables by reducing the amount of area planted under rice, but not the amount of 

irrigation applied to the rice paddy that they do plant. 

The effect of groundwater depletion on agricultural production also varies based on crop type. 

Groundwater depletion is associated with the largest yield declines for winter rice then maize, 

and the largest area reductions for winter maize then rice. There is less impact of groundwater 

depletion on winter wheat and sorghum. Interestingly, even though the largest yield declines are 

seen for winter rice, farmers are more likely to reduce the area under winter maize due to 

groundwater depletion. This may be partially explained by differences in where winter rice and 
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winter maize are planted. Winter maize is concentrated in Central and Southwest India (Figure 

S1), where groundwater tables are already low (Figure 1) and there is little winter rainfall, and 

winter rice is concentrated in North and Eastern India, where groundwater tables are higher and 

there is more winter rainfall (Figure S2). Farmers may, therefore, face increased irrigation 

constraints in Central and Southwest India where maize is planted, resulting in a greater 

reduction in area under winter maize at the national scale. Considering crop switching, we find 

that farmers reduce the area under monsoon rice in response to falling groundwater levels, 

however, this effect is small (< 0.21% per 1 m decline). This suggests that crop switching is not 

an important axis of adaptation to falling groundwater tables. 

When we examine the impact of groundwater depletion on agricultural production across 

Punjab and Haryana, two highly input-intensive agricultural states in India, we found no effect of 

groundwater depletion on winter wheat and monsoon rice yields. This may be because these 

states are primarily located across the highly recharged alluvial plains of the IGP, and heavily 

subsidized electricity may have cushioned the impact of groundwater depletion on crop yields in 

this region. We did find that groundwater depletion is associated with a reduction in area and 

production of monsoon rice, which suggests that farmers respond to falling groundwater tables 

by reducing the area under irrigation and not the amount of irrigation applied to planted fields. 

While we did find that farmers reduced the proportional area under monsoon rice in response to 

falling groundwater tables, this result was very small (~ 0.25% per 1 m decline) and only 

marginally significant (Table S5). This suggests that crop switching is not an important way that 

farmers are responding to falling groundwater tables in this region. 
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Based on the results of our crop choice model for Punjab and Haryana, we find that at current 

subsidized energy prices, the most profitable monsoon crop was rice. More surprisingly, when 

energy prices were set in line with the national average cost of electricity (approximately 114 

times higher), there was only a modest effect on crop choice, with farmers in 29% of districts 

expected to switch to less water-intensive maize and pearl millet. Strikingly, only after setting 

prices to 16 Rs/kWh (approximately 356 times higher) would farmers in half of districts switch 

to planting less water-intensive crops (Figure 6). Some studies have suggested that the most 

efficient way to ration farmer water consumption would be to raise the price of electricity 

through subsidy reform (Balani, 2013), with one study concluding that a 10% reduction in 

subsidies can reduce groundwater extraction by 4.4% (Brooks and Gruère, 2014). Our findings 

suggest that crop switching will likely not be the primary response to realistic changes in energy 

prices. We did find that with higher energy prices, both groundwater levels and energy prices 

became increasingly important factors in profit-based crop decisions. This suggests that even 

though increasing energy prices may not incentivize farmers to switch crops, it may incentivize 

other water conservation efforts, such as using more efficient irrigation infrastructure like 

sprinkler and drip irrigation (Fishman et al., 2015, Taraz, 2017), growing shorter-duration, less 

water-intensive rice varieties (Balwinder-Singh et al., 2015, Livingston, 2009), using 

supplemental canal irrigation (Hussain et al., 2003), adopting water-saving laser land leveling 

(Larson et al., 2016), and shifting sow dates to better align with monsoon onset (Rao et al., 

2016). 
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We note several limitations with our analyses. Uncertainties in the district level data (Ajaz et 

al., 2019) could introduce biases in our regression coefficients, which we attempted to reduce by 

removing obvious outliers in the data (Supplementary method). In addition, district groundwater 

levels were determined based on mean values from all available wells located within each 

district, and it is possible that values are not accurate for districts with few observation wells. As 

a robustness check, we reran all regressions using only districts where at least four wells were 

available and found that our results largely remained similar, suggesting that differences in well 

data availability did not bias our results (Table S9-S12). Considering our crop choice model, it 

does not consider that groundwater quality likely diminishes as water tables decline (Konikow 

and Kendy, 2005), particularly in coastal areas. In addition, we assume that the cost of energy 

will remain linearly associated with depth as water tables fall, however, this association may not 

be linear as new, costly infrastructure may be required to reach deeper water tables. We also did 

not consider the impact of minimum support prices (MSP) (Srinivasan and Jha, 2001, Balani, 

2013, Shah, 2014), however, we do not think this should impact our results as the crop prices 

that we used in our models were higher than the average MSP during our study period. Further, 

we considered a beneficiary irrigation efficiency of 0.29 (i.e. 29% of irrigated water used in 

transpiration) to estimate total water withdrawal in the crop choice model. However, this value 

varies depending on the type of irrigation used, which is not captured in the model, and we 

assume that the Eb for India is the lowest among other highly irrigated countries in the world 

(Jägermeyr et al., 2015). As a sensitivity analysis, we considered additional scenarios of higher 

efficiency for alternative crops (Eb = 0.4 and 0.5) compared to rice and found that results from 
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our crop choice model are similar (Figure 6b-6c). Besides, we did not account for additional 

energy required to account for losses in other irrigation systems (e.g., head losses in pipes and 

filtration in sprinkler and drip irrigation systems). However, we considered a pumping efficiency 

of 0.6 following literature and believe that additional loss in the systems is relatively small 

(Bhatnagar and Srivastava, 2003) to change our results. We used one blue water footprint value 

for all of Punjab and Haryana, but acknowledge that this value can vary across districts due to 

differences in climate, crop management, and crop variety. We do not believe this variation is 

large enough to change the main results of our model given that when we rerun our model using 

the blue water footprint reported for all of India we get similar results (Table S3; Figure S3). 

Finally, we do not account for cultural food preferences, particularly preferences for consuming 

rice and wheat (Davis et al., 2018, DeFries et al., 2018, Timsina and Connor, 2001), which may 

additionally influence crop choice decisions. Despite these limitations, we believe that our 

overall finding that increased energy prices alone will not incentivize large-scale crop switching 

is likely accurate.

In conclusion, we find that groundwater depletion is already negatively impacting 

agricultural production in India, particularly during the winter season. Despite these negative 

impacts, we find little evidence that farmers are switching to planting less-water intensive crops 

as groundwater tables fall. Interestingly, our scenario analysis suggests that raising energy prices 

alone will have little impact on crop switching. These results in combination with findings from 

other studies suggest that additional measures are likely needed to change farmer behavior, 

including prioritizing water use seasons, rationing energy, and rewarding farmers who conserve 

groundwater (Sidhu et al., 2020). Such interventions will be critical for maintaining and 

increasing India’s food security in the face of groundwater depletion over the coming decades. 
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