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1 Introduction

The Green Revolution is one of the most important technological transformations of the 20th

century. In the course of the past 60 years, modern crop varieties (MVs) of staple crops, de-
veloped by dozens of national agriculture programs with the support of international agricul-
tural research centers, spread across the developing world. Along with complementary inputs,
MVs have been a key driver of dramatic increases in crop yields (Evenson and Gollin, 2003a),
which vastly improved food supplies and may have triggered broader economic development
and structural transformation (McArthur and Sachs, 2019; Dall Schmidt et al., 2018; McArthur
and McCord, 2017; Bustos et al., 2016; Nunn and Qian, 2011). Africa’s relative lack of a green
revolution is often cited as a key reason for why the region has not yet experienced greater
long-term economic success (Diao et al., 2010; Byerlee et al., 2009).

Despite widely-held agreement about the contribution of the Green Revolution to global ag-
gregate food supply, micro-level evidence on how the diffusion of MVs affected human welfare,
particularly health, remains remarkably scarce (Masters et al., 2014). Credible evidence on this
question could provide important insights on the linkage between increased economic produc-
tivity and health, which remains imperfectly understood particularly for low income households.
It also contributes to the debate about the relative contribution of increased incomes (as opposed
to public health advances) to the 20th century’s dramatic decline in infant mortality (Cutler et al.,
2006; Pritchett and Summers, 1996; Preston, 1980; Ruhm, 2000), particularly for rural popula-
tions in developing countries where incomes are strongly tied to agricultural productivity growth
(Bhalotra, 2010). In addition, this evidence adds to the renewed discussion about the degree to
which agricultural productivity gains can improve human health in developing countries, be it
through nutritional or income channels. The topic is of great interest to development policy, but
several reviews lament the shortage of credible evidence on the question (Webb, 2013).1

In this paper, we estimate the localized (sub-national) impact of MV diffusion during the
Green Revolution on infant mortality (IM) at a scale that has not been attempted to date. Our
analysis makes use of spatially precise survey data from the Demographic and Health Surveys

1Undernutrition continues to be recognized as a primary driver of infant mortality (Black et al., 2003). There
is a growing interest in investigating the nutritional impacts of agricultural interventions through empirical field
studies. Most relevant studies on this question do not measure impacts on health or mortality, but on nutritional
outcomes. Moreover, they mostly analyze interventions focused on the diversification of cultivation rather than on
increases in the yield of staple crops. Several reviews of the hundreds of papers written on the topic have found
little evidence for meaningful impacts (Webb (2013), and citations therein). However, these reviews also warn that
the absence of evidence may well reflect the quality of the research on the topic rather than necessarily indicating
that such interventions have little impacts.
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on the mortality of about 600,000 children born between 1961 and 2000 across 21,604 rural
sampling locations in 37 countries. In order to overcome the unavailability of large scale sub-
national data on MV diffusion, we employ a novel approach that exploits the spatial variation
in local crop-share and the temporal variation in national-level MV adoption to construct a spa-
tially explicit, time-varying modern variety diffusion index (MVDI) at 5 arc minute resolution
(around 10 km at the equator). We then estimate the within-country association between this lo-
cal prediction of MV diffusion and IM using a difference-in-differences approach that controls
for DHS sampling cluster fixed effects and flexible country-specific time trends. Our identi-
fication strategy therefore exploits sub-national variation in MV diffusion resulting from the
interaction of the local crop mix in each country and differences in MV diffusion rates across
crops in the same country, which largely reflects variation in international research performance
across crops. We subject this model to a wide range of demanding robustness tests.

Localized increases in crop yields resulting from MV adoption can lead to local health
improvements through both nutritional and income channels, and may depend on whether a
household is a net food seller or buyer (Aksoy and Isik-Dikmelik, 2008). For undernourished
subsistence farmers, higher yields can directly lead to increased food intake. For farmers who
are net food sellers, income may or may not increase, depending on how far prices decline as
total production increases. Non-farming households may also benefit if increased production
reduces local food prices in imperfectly connected markets, through higher consumption of
either food or other (potentially health-enhancing) goods. On the other hand, the Green Rev-
olution has also been criticized for potentially failing to reach the lowest income households,
focusing entirely on caloric output and for its environmental impacts (Pingali, 2012). There is
evidence that the intensive use of agro-chemical inputs that typically accompanies MV adoption
has adverse environmental and health effects, including on IM (Brainerd and Menon, 2014; Dias
et al., 2019). The net effect on health and IM is therefore unclear and a topic of ongoing debate,
which, in turn, has important implications for current policy debates on the merit of continued
investments in staple crop improvements and the diffusion of modern varieties, particularly in
sub-Saharan Africa.

We find a large and statistically significant impact of MV adoption on infant mortality.
Results indicate that the diffusion of MVs reduced infant mortality by 2.4–5.3 percentage points
(for comparison, the beginning-of-period infant mortality was 18% in 1960, and decreased to
8% by the end of the sample period in 2000). The effect was stronger for male infants. Results
are robust to various alternative definitions of the MVDI as well as controlling for indicators
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of other drivers of IM decline such as maternal education levels or access to public health,
controlling for predictors of localized economic growth such as access to trade, removing crop-
specific trends that could potentially be driving the association, and limiting the comparison to
siblings. Overall, our results suggest that about 20–25% reduction in IM is due to MV adoption
during the observed period.

The paper makes several contributions. First, it quantifies a key relationship between two
major transformations in the last 60 years of human history – agricultural productivity increases
and health improvements – at a spatial scale and precision not previously possible. Studying this
relationship at global scale is important because MVs diffused at unequal rates across regions
(with Asia at one extreme and sub-Saharan Africa at the other) and because local covariates
might affect this relationship in ways that shape the welfare gains of MVs. Second, the paper
offers a methodological contribution in the construction of the MVDI by exploiting spatially ex-
plicit data on historical crop shares with time-varying data on agricultural technology advances
in order to generate a local measure of MV diffusion. This geospatial method for construct-
ing sub-national data on MV diffusion has useful analogues and applications in other empirical
contexts. For example, Dias et al. (2019) construct a municipality-level variable for herbicide
usage in Soy production in Brazil. Third, the results are of core interest to policy. If the average
MV diffusion rate in sub-Saharan Africa were to increase to South Asian levels (around 60%),
our global estimates imply that IM in SSA would decline by around 31% from the 2010 infant
mortality rate of 65 per 1,000 live births (World Bank, 2015). This reduction would be com-
parable to the benefits of reducing particulate matter pollution in SSA to WHO recommended
levels and of achieving universal coverage of several public health interventions (Heft-Neal
et al., 2018). Finally, the fact that effects of MV diffusion on child health vary significantly by
child sex contributes to the existing literature on sex-specific health outcomes for children.

Previous research has shown that IM responds to aggregate income shocks (Baird et al.,
2011). Multiple studies have investigated the impacts of the Green Revolution on agricultural
and economic outcomes using country-level data (e.g., Evenson and Gollin (2003a), Walker and
Alwang (2015)). Country-level analyses are typically prone to limitations when they involve
variables that display substantial sub-national heterogeneity, moreover the relatively small sam-
ple size limits statistical power.2 Moreover, any association is difficult to interpret causally,
since it could be driven by latent aspects of overall economic development. For example, coun-

2We show in Table A1 that estimates of the association between MV diffusion and infant mortality using
country-level data are noisy and do not lead to a conclusive result.
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tries experiencing faster economic growth in non-agricultural sectors might be better placed to
invest in both agriculture (perhaps through subsidizing MVs) and public health. Two recent
advances in this regard are offered by Gollin et al. (2018) and Moscona (2019), who employ
quasi-experimental research designs that exploit agro-ecological spatial variation in MV suit-
ability and time variation in development of new MV technologies for various crops. Gollin
et al. (2018) find large impacts on income and mortality, whereas Moscona (2019) do not find
evidence for positive impacts on national income.3

The lack of availability of sub-national data on MV adoption has made it difficult to go
beyond cross-country analyses, at least at large scales.4 An exception is the small but burgeon-
ing literature that exploits sub-national variation within countries (Sekhri and Shastry (2019);
Bharadwaj et al. (2020); Moscona (2019)). Providing a distinct long-term perspective, Sekhri
and Shastry (2019) shows that an increase in total calories and fat intake due to the Green
Revolution led to adverse adult health outcomes in India. Moscona (2019) finds MV adoption
stimulated the agricultural sector but shrank manufacturing. Bharadwaj et al. (2020), in a study
most related to ours, employ a district-level difference-in-differences strategy and find that MV
adoption reduced infant mortality. Even though our data covers a large number of developing
countries (including India) and our analysis pursues a very different empirical strategy, our esti-
mates on the impact of MV adoption on infant mortality are similar to those found by Bharadwaj
et al. (2020). In that sense, the two studies validate each other’s internal and external validity
in a manner seldom possible. This makes it possible to generalize the conclusions beyond the
Indian context, which is particularly relevant for sub-Saharan Africa, where the diffusion of
MVs and other modern agricultural technologies is lagging behind other developing regions.

The remainder of the paper is structured as follows: Section 2 discusses data and empirical
methodology, Section 3 describes results, and Section 4 concludes.

3Gollin et al. (2018) also adopt a Bartik-style approach using country-level data, but there are two notable
distinctions. Firstly, the levels of analysis (country-level versus household) are different, as are the treatments
of interest (yields versus MV adoption per se). Because we use micro data, we can also make within-country
comparisons, for instance, to analyze heterogeneity by location and household characteristics. In this sense, the
two papers provide complementary evidence on welfare implications of HYV adoption. Secondly, our use of
grid cell-level predicted MV diffusion and child-level mortality data allows us to control flexibly for potential
challenges to causal interpretation of results.

4Several single-country studies show that agricultural technology improvements are associated with reductions
in the likelihood of households living below the poverty line in Mexico, Ethiopia, Rwanda and Uganda (Becerril
and Abdulai, 2010; Zeng et al., 2015; Larochelle et al., 2015).
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2 Data and Empirical Strategy

2.1 Data Sources

2.1.1 Demographic and Health Surveys

Our main outcome variable, infant mortality, is measured through Demographic and Health Sur-
veys (DHS), which are the only high-quality, spatially-referenced, and internationally-comparable
household surveys that provide detailed information on health at the individual level. Pooled
DHS survey data have been used for numerous studies on the impacts of pollution and income
shocks on child health (von der Goltz and Barnwal, 2019; Heft-Neal et al., 2018; Baird et al.,
2011). We compiled DHS data for developing countries in the following regions: sub-Saharan
Africa, North Africa, Latin America, South East Asia and South Asia. Each DHS surveyed
women of ages 15-49 regarding their fertility history, generating records for about 3 million
children. In our preferred specification, we restrict the data to rural areas and to mothers that
have never migrated, since we are assigning the exposure of each child to MV diffusion accord-
ing to their location.

We focus on children born between 1961 and 2000, given the available data on MV diffu-
sion. We use the recalled birth dates, survival at survey time, date of death of her children (along
with other basic information on the child’s birth) from the birth history of up to 20 children born
to the respondent. Data are then transformed into individual records for each child born, and
a binary infant mortality variable codes for whether the child died before she reached twelve
months of age. Figure A1 shows the distribution of child births over time in our sample.

While it is very unlikely that a mother will fail to recall the birth of her child, recall bias
(regarding the timing and omission of distant births) may be a potential concern for studies
using this data. In our case, since the MV diffusion data is reported only every five years,
inaccuracies in reporting the timing of births are likely a lesser concern. Additionally, the errors
in recall would have to be correlated to crop share variation across the country in order to
bias our estimate of the effect of MVDI on IM. Any ubiquitous problems with recall would be
absorbed by the flexible detrending at the country level.

The resulting sample (once matched with the MV diffusion data) includes 21,604 DHS
sampling clusters5 in 966 administrative regions spread across 37 countries. The DHS are geo-
referenced to roughly within 5 km in rural areas, which can be spatially merged with crop

5In DHS surveys, clusters are usually villages in rural areas and city blocks in urban areas.
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distribution data allowing for an analysis at high spatial resolution. Using the georeferenced
DHS data (as opposed to DHS surveys geolocated only to a district or other larger administrative
unit) is important because of significant spatial variation in both IM and crop mix, and because
exploiting the rich subnational variation is key to explaining most spatial variation in child
mortality (Burke et al., 2016). The DHS clusters in our study are mapped in Figure 1.

Further, we extract data on covariates such as mother’s age at birth, mother’s literacy and oc-
cupation, and socioeconomic characteristics of households from various DHS modules, which
we match with the child-level information on infant mortality. We use the data on socioeco-
nomic characteristics of households to construct a poverty score using standard principal com-
ponent analysis method, which serves as a proxy measure of latent wealth characteristics of
rural households. The score includes socioeconomic household traits like education, marriage
status, type of floor, roof and wall, ownership of agricultural assets such as livestock, land and
animal cart and follows the approach in von der Goltz and Barnwal (2019). The score is created
only for rural areas and the scale is reversed so that higher values indicate fewer assets. It is
important to clarify that some of the data (such as mother’s education, occupation and poverty
score) are available only at the time of survey, not at the time of each child’s birth.

In addition to data on infant mortality, the DHS also collects anthropometric measures that
can be used to measure malnutrition among children. We use four such measures as a secondary
outcome in our analysis: severe stunting (defined as being more than three standard deviations
below the age-specific mean of height-for-age), severe wasting (three standard deviations be-
low median weight-for-height), severe underweight (three standard deviations below median
weight-for-age), and low birth weight (child’s weight at birth less than 2,500 grams). Unlike
the birth histories which are used to construct infant mortality, these data are available only for
recent births in relation to the year of survey.

Finally, since improvements in public health are an obvious driver of IM change, we lever-
age the richness of the DHS to create proxies such as access to health care (women reporting
that distance was not an obstacle in the use of medical care), antenatal care visit (number of
antenatal visits reported by women), institutional delivery (children who were reported to have
been delivered in any kind of health facility), breastfeeding (women who reported to be breast-
feeding at the time of survey), and vaccination rates (children who received any vaccination for
BCG, TB, DPT, Polio, Measles, etc.).

Table 1 provides summary statistics, and Table A2 lists the countries in the main sample, the
number of DHS rounds available, and the number of male and female children in the sample.
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2.1.2 Modern Variety Diffusion Data

Modern varieties are defined as the crop genotypes developed by International and National
agricultural research centers (IARCs and NARCs) that spread throughout the developing world
beginning with the Green Revolution in the early 1960s. Common breeding objectives for
modern varieties are high yield potential; resistance to stress, pests, and disease; and improved
quality of the harvested material (Byerlee et al., 2009). We utilize a historical, country-level
dataset on MV diffusion from a study commissioned by the Impact Assessment and Evalua-
tion Group of the CGIAR’s Technical Advisory Committee, also summarized by Evenson and
Gollin (2003a). The dataset (referred to as EGMV from here onwards) was assembled utilizing
country-specific MV introduction and diffusion data to create a complete time series of MV
adoption rates in 5-year intervals for 11 major crops (wheat, maize, rice, barley, pearl millet,
sorghum, cassava, potato, groundnut, beans, and lentils) in 90 countries between 1960 and 2000.
The original data were constructed from expert opinion surveys and (for some crops) admin-
istrative records and surveys. MV adoption rates denote the fraction of crop area planted in
modern varieties relative to the total area planted in both modern and traditional varieties. Note
that the crops for which MV data are available are important staple crops in terms of caloric
intake, and cover 60% of cropland in our sample locations on average. Our analysis only uses
data for the 37 countries for which geo-referenced DHS data are available.

2.1.3 Global Crop Maps

We employ three global crop datasets, each providing spatially explicit data on localized crop
mixes. These datasets report the area cultivated by crop in every location of the world, and are
used to construct predicted local MV diffusion rates. All three crop datasets provide global maps
at a five arc-minute resolution (around 10 km grid cells at the equator), but they differ in terms
of crops covered, data sources, and methodology. The three crop maps allow for constructing
three versions of the MVDI, which are used to test the robustness of the main results.

The first crop dataset is from EarthStat.6 Monfreda et al. (2008) reports harvested area
data circa 2000 (1997-2003) for 175 crops, of which 11 are relevant to our analysis due to
the availability of EGMV data. This dataset uses agricultural census and survey information
to distribute crop harvested area across physical cropland areas, which are determined from
remote sensing and agricultural census and survey information.

6The dataset is available at www.earthstat.org.
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The second crop dataset is the Spatial Production Allocation Model (SPAM). Similar to the
EarthStat data, the SPAM maps are based on a collection of agricultural census and survey data,
but the disaggregation to the grid cell of crop harvested area is based on a modeling approach
that includes information on total cropland areas, biophysical crop suitability assessments, pop-
ulation density, and crop prices (You et al., 2014). SPAM includes crop harvested area data for
10 crops circa 2000 for which EGMV data is also available.

The third crop dataset is also from EarthStat, but reports yearly historical harvested area data
from 1961–2008 (Ray et al., 2012), thus including years before the onset of the Green Revolu-
tion. The advantage of using plausibly exogenous crop shares comes at the cost of sacrificing
crop coverage, as EarthStat 1961-65 only covers three major cereal crops for which EGMV
data is available: maize, wheat, and rice.7 The spatial and temporal frequency of the source
data differs by country, and is not as complete as EarthStat 2000. When historical subnational
data is not available in a given country, the harvested area estimates are determined from the
circa 2000 crop distribution data and historical national-level data.

2.2 Construction of Modern Variety Diffusion Indicator

To overcome the fact that subnational data on MV diffusion over time is extremely sparse in
developing countries, we construct a high-resolution prediction of local MV diffusion which we
refer to as the Modern Variety Diffusion Indicator (MVDI). The MVDI is constructed by com-
bining high-resolution global crop maps with country-level, crop-specific data on MV diffusion
over time (1960-2000) available from Evenson and Gollin (2003b). Variation in the MVDI
therefore combines fine spatial variation in cropping patterns with crop-specific temporal vari-
ation in the diffusion of MVs, which partly results from differences in international agricultural
research priorities and breakthroughs across crops during the course of the Green Revolution.

The onset of the Green Revolution and its subsequent patterns of diffusion can be considered
exogenous to specific countries. International crop research programs led to improved varieties,
which were then localized by national agricultural research centers. During 1960-2000, MVs
diffused across the developing world in stages, largely dictated by technological advances at
the IARCs for different crops and different agroecological zones. Early successes in the 1960s
benefited wheat and rice varieties, in part because technologies available for these crops in
developed countries could be easily transferred. Breeding programs for many other crops had

7The dataset also includes soybean, but no EGMV data is available for this crop.
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no such earlier science to rely on, and thus modern varieties for crops such as sorghum and
millet only became available significantly later (in the 1980s). The arrival of MVs at a given
location and time, therefore, was determined to an important extent by the scientific advances in
the IARCs, the location’s agroecological suitability for different crops, and how much additional
breeding would have to be done by NARCs (Evenson and Gollin, 2003a).

The MVDI is constructed in each grid cell and 5-year time step as the weighted average
of crops’ MV diffusion rate in that year (reported at the country level by Evenson and Gollin
(2003b)), where the weights represent the relative share of cropped area in that grid cell devoted
to that crop. To test whether the results are driven by particular features of a single crop dataset,
we develop and analyze three variants of the MVDI based on three distinct global crop map
datasets as mentioned earlier (Monfreda et al., 2008; You et al., 2014; Ray et al., 2012). The
MVDI is constructed as follows:

MVDIvct =

∑J
j=1 (CropAreajvc × EGMV Areajct)∑J

j=1 (CropAreajvc)
(1)

where, v is a location (DHS cluster) in country c and t is the period of observation. EGMV Areajct

is the share of area cultivated with crop j that is planted with MVs in country c at time t, and
CropAreajvc is the area cultivated with crop j in location v, as reported in the global crop maps
(which are time invariant) mentioned above. The summation is conducted over all crops cov-
ered by the crop map in question: for the EarthStat circa 2000 data (Monfreda et al., 2008), J
= 11 (barley, bean, cassava, groundnut, lentil, maize, millet, potato, rice, sorghum, wheat); for
the SPAM dataset (You et al., 2014), J = 10 (barley, bean, cassava, groundnut, maize, millet,
potato, rice, sorghum, wheat); and for the historical EarthStat data (Ray et al., 2012), J = 3
(maize, rice, wheat).

Figure 2 illustrates the construction of MVDI using one country as an example (Nigeria).
We multiply the spatial distribution (top panel, this illustration uses data from Monfreda et al.
(2008)) with the national-level MV diffusion (middle panel, data from Evenson and Gollin
(2003a)) for all crops for which data is available (there are 11 such crops in EarthStat 2000 but
only 5 are shown to conserve space). This approach generates a gridded map (bottom panel)
of the diffusion of MVs in each year, weighted across all crops. For example, we can see
that there is a relatively low rate of overall MV diffusion in northern Nigeria. This is because
millet happens to be a dominant crop in that region and MVs for millet diffused late because
IARCs did not produce relevant varieties until the 1980s (Evenson and Gollin, 2003a; Walker
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and Alwang, 2015). Figure A2 and A3 depict the construction of MVDI using SPAM data (You
et al., 2014) and EarthStat 1961-1965 (Ray et al., 2012), respectively. Figure 3 shows the global
distribution of the MVDI (using the EarthStat 2000 data) in 1965, 1985, and 2000.

Each of the three MVDI indicators has strengths and weaknesses. The variant that uses
EarthStat’s 1961–1965 average cropped areas generates a more exogenous subnational predic-
tion of local MV diffusion, since subsequent crop distributions might shift as a response to MV
availability. On the other hand, using the Earthstat 2000 and SPAM data allows for more crops
in the analysis, and sidesteps data quality issues in the construction of 1961–1965 cropland
maps for countries lacking agricultural census data in earlier time periods8.

The method used to construct the MVDI is similar in spirit to the Bartik-style shift-share
approach (Bartik, 1991; Autor and Duggan, 2003; Autor et al., 2013).9 It takes a measure of
temporal change at the aggregate level (national MV adoption, partly reflecting breakthroughs
in international agriculture research), and considers variation in the degree to which differ-
ent locations were exposed to this change given their relevant characteristics (crop mix). Our
methodology to construct a grid-cell level and time-varying indicator for MV diffusion provides
a unique approach to address the lack of sub-national level MV data in empirical research.

2.2.1 MVDI as a downscaling of MV Diffusion

We use the MVDI as a prediction of the actual, but unobserved, localized rate of MV diffusion
in the sample of DHS clusters. For the analysis to be interpreted correctly, these constructed
proxies need to be highly correlated with actual diffusion rates. Since the local MV diffusion
rates are not observed globally with comparable spatial precision, our ability to test the correla-
tion of MVDI with actual local diffusion rate of MVs is limited. We can, however, perform two
partial tests.

The MVDI is only a valid prediction if the fraction of area devoted to various crops remains
well correlated over time. This can be verified by checking the correlation of grid cell crop
areas between 1965 and in 2000 for countries in our sample with historical subnational census
records (Ray et al., 2012). The correlation is 0.92 in the case of maize, 0.57 in the case of
wheat, and 0.95 in the case of rice, suggesting little variation in the spatial crop mix of main

8The correlation between MVDI based on EarthStat 2000 and SPAM is 0.89; between MVDI based on EarthStat
2000 and EarthStat 1961-65 is 0.88; and between MVDI based on SPAM and EarthStat 1961-65 is 0.83.

9A particularly relevant recent example is McGuirk and Burke (in press), which examines the reduced form
effects of local food prices on conflict. They construct local producer price indices as their explanatory variable by
multiplying local crop shares with global time-varying crop prices.
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staple crops over time.
Moreover, the MVDI can be validated against local MV diffusion rates in places where the

latter were measured over time, in the spirit of a first-stage test. Historical data on MV use
is available for India at the district (admin 2) level from 1960-2000 (ICRISAT, 2013). Table
A3 presents estimates of the following regression, showing that the constructed MVDI is well-
correlated with actual MV diffusion rates in India:

MVdt = βMVDIdt + ud + vt + edt (2)

where,MVdt is the area weighted adoption of modern varieties in district d at time t (constructed
using district-level data ICRISAT (2013));MVDIdt is the constructed MVDI variable in district
d at time t; ud are district fixed effects and vt are year fixed effects; and edt is the idiosyncratic
error term that is clustered at district level. The Indian administrative data on area planted to
MVs is only reported for 5 crops, therefore MVDI using EarthStat 2000 areas is only calculated
using those crops [i.e. j = 5 (rice, wheat, maize, sorghum, millet)]. The definition of MVDI
based on EarthStat 1961-1965 areas uses j = 3 (rice, wheat, maize).

2.2.2 Alternative MV Definitions

One concern with the definition of MVDI in equation 1 is that the adoption of MVs at the coun-
try level (EGMV Areajct) might be endogenous. To guard against this, consider the following
alternative definition which is created using the regional average of MV adoption, leaving out
the country where the DHS sampling cluster is located:

MVDI−cvcrt =

∑J
j=1

(
CropAreajvc × EGMV Area−cjcrt

)∑J
j=1 (CropAreajvc)

(3)

where, v is a DHS sampling cluster in country c in region r and t is the period of observation.
EGMV Areajrt is the share of area cultivated with crop j that is planted with MVs in region r at
time t, and CropAreajvc is the area cultivated with crop j in location v, as reported in the global
crop maps (which are time invariant) mentioned above. EGMV −cjcrt refers to the area-weighted
regional average for MV adoption for crop j in country c in region r, calculated using all 86
countries in Evenson and Gollin (2003b) after excluding country c. Region r = (Caribbean,
Eastern Africa, Middle Africa, Northern Africa, South America, South-Eastern Asia, Southern
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Africa, Southern Asia and Western Africa). This definition of MVDI based on the leave-out
regional average represents a relatively more exogenous proxy for MV diffusion because it is
based on MV adoption in neighboring countries.

A second alternative construction of the MVDI imposes additional spatial structure beyond
equation 1 by assuming that areas growing relatively more of a crop receive proportionally more
MVs per unit area. We first examine this possibility empirically using actual MV diffusion
from India (ICRISAT, 2013), where we are able to observe the spatial dynamics of actual MV
diffusion for each crop, and confirm this hypothesis for the three crops used to construct the
MVDI version that is based on EarthStat 1961-1965. As Figure A4 shows, MV diffusion rates
for a crop are positively correlated, across districts, with the relative share of this crop in the
local crop mix in 1961-1965. This more spatially structured version of the MVDI (‘Adjusted
MDVI’) assumes that MV diffusion for any given crop is highest at locations in which this
crop’s share in the local crop mix is highest, in a way that preserves the country-level aggregate
MV diffusion rate for the crop in each particular year and country. The degree of the skew
towards high crop-share areas follows what is observed in the India data in Figure A4. Table
A3 shows that the Adjusted MVDI (in Panel B) correlates well with actual MV diffusion rates
in India, and has a higher coefficient (closer to the ideal of 1) when compared to the MVDI
constructed with equation 1 (Panel A).

2.3 Empirical Specification

The main specification in the paper is as follows:

yivct = γMVDIvct + uv + Zct +Xivct + eivct (4)

where, yivct is a binary indicator of infant mortality i.e. whether child i born in year t in DHS
sampling cluster v in country c died in the first year of life;MVDIvct is the constructed indicator
of MV diffusion in the grid cell to which cluster v belongs10. Xivct is a vector of child-level con-
trols that includes the child’s sex and a quadratic function of the mother’s age. The regression
controls for DHS cluster fixed effects uv, and country-by-year fixed effects Zct. The DHS sam-
pling cluster fixed effects absorb all time-invariant location characteristics plausibly correlated

10We assign MVDI to the year in which the child is born, consistent with the conventional practice in the
literature. There will be some misassignment of deaths that occurred in the following year. However, the scope for
error is significantly reduced since the time-varying component of MVDI varies in 5-year steps.
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to both MVDI and health, such as climate, soils, or distance to the capital city. The country-
by-year fixed effects flexibly remove national trends, thus controlling for all country-level, time
variant variables (economic growth, agricultural policy changes or vaccination campaigns, for
example) that might have otherwise biased country-level analyses of the MV-IM relationship.

Our analysis therefore asks whether the change in MV adoption in a given DHS cluster
was ahead of or behind the national trend, and whether this deviation in the rate of change was
associated with a deviation in the rate of decline of IM risk among children sampled in that DHS
cluster. eivct refers to the idiosyncratic error term, which is clustered at the admin-1 level (there
are 966 state-level administrative zones in the 37 countries in our data) to account for spatial
autocorrelation in the treatment variable as well as temporal (serial) correlation in the outcome
variable (Bertrand et al., 2004). In addition, our main results in Table 2 include a second set
of standard errors that employ two-way clustering at the admin-1 and at the country-year level.
This adjusts for spatial autocorrelation that might exist beyond the admin-1 level.

The coefficient of interest is γ, which we hypothesize to be negative if faster MV diffusion
led to reductions in IM. As the MVDI is a downscaled measure of national MV diffusion data,
it offers a prediction of actual MV diffusion at local level. Strictly speaking, we estimate the
treatment effects of predicted MV diffusion on infant mortality, but for brevity refer to it as the
impact of MVDI or MV diffusion. This should be kept in mind when interpreting the results of
the paper.

Since our estimates rely only on subnational deviations from trends (and pooling across
countries), this approach offers a significant improvement on cross-country analyses. It dramat-
ically increases sample sizes and data resolution, allowing for more precise statistical estimation
and allowing implicit and explicit controls for numerous other potential drivers of IM declines.
While our approach does not eliminate all possible causes of potential bias, it greatly reduces
the scope for such bias when compared with existing studies on a global scale.

We subject our results to a wide range of robustness tests, which include controlling for indi-
cators of other drivers of IM decline such as maternal education levels or access to public health,
controlling for predictors of localized economic growth such as access to trade, removing crop-
specific trends that could potentially be driving the association, and limiting the comparison to
siblings. A final test guards against the possibility that differences in the rates of MV diffusion
across crops in the same country could be influenced by intra-country geographical variation in
rates of economic development or health improvements. The test makes use of MVDI values
constructed with each country’s crop map but with MV diffusion rates taken from and averaged
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across neighboring countries (excluding the country in question). Since random assignment of
MV diffusion across populations is only feasible at local scales, our approach offers the most
rigorous quasi-experimental alternative to study this important question on a global scale.

In conducting robustness checks, we estimate version of equation 4 in which the vectorXivct

includes additional child or DHS cluster-level controls. We also estimate two specifications
designed to allow for additional subnational time trends that correlate with geographic features
or the local crop mix. Firstly, we estimate:

yivct = γMVDIvct + uv + Zct +Xivct + Act ×DCoast
vc +Bct ×DCities

vc + eivct (5)

where all terms are as in the main regression, with the addition of interactions between country
× year fixed effects (Act, Bct) and the distance of each DHS cluster from the coast (DCoast) and
from cities (DCities). This model separates the effect of MV diffusion on IM from any country-
specific flexible time trends that differentiate locations on the basis of their distance to coast or
urban centers, and therefore flexibly captures much of the local patterns of economic growth
within countries. Secondly, we estimate:

yivct = γMVDIvct + uv + Zct +Xivct +
∑
j

αjA
(j)
ct × CropAreajvc + eivct (6)

where all terms are as in the main regression, with the addition of interactions between crop
specific region year fixed effects A(j)

ct and the cropped area of each crop j in the location in
question, for all crops in the data.

A final consideration is that the restriction of our sample to mothers who have never moved
affects the interpretation of results. Our estimate represents the impact on the subsample of
children born to mothers in rural areas who never migrated during the MV diffusion. While this
sample could potentially be endogenously determined by MV diffusion, we note that our results
cannot be driven by changes in sample composition over time. Since each village is surveyed
only once, the resulting panel of children comes from a fixed set of mothers who were surveyed.
Note that since migrants cannot be linked to village of origin, a similar caveat in interpretation
would apply to any study that employs retrospective panels constructed from the DHS surveys.
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3 Results

3.1 Effect on Infant Mortality

Our main results obtained by estimating equation 4 establish that, relative to the national trend,
children born when MVs achieved wider diffusion in their clusters were less likely to die in
infancy (Table 2, Panel A). The result is robust to using distinct versions of the MVDI derived
from the three global crop map datasets (shown across columns 1-3).

Column 1 reports estimates derived by using the EarthStat global crop maps for 11 crops in
2000 (Monfreda et al., 2008). The magnitude of the estimate suggests that an increase of one
standard deviation (17 percentage point) in MVDI is associated with a 1.3 percentage point de-
cline in infant mortality (compared to the sample mean of IM over the period of 10%). Columns
2 and 3 report analogous estimates derived using the SPAM and historical (1961-1965) Earth-
Stat global crop datasets, respectively. The three sets of estimates are similar in both magnitude
and precision. For further robustness and heterogeneity analysis, we prefer the MVDI con-
structed with the crop map in the earliest period (i.e., EarthStat 1961-1965) since the crop
shares within a grid cell in later years might be endogenous to subsequent MV adoption for
specific crops.

Our empirical strategy does not allow us to directly identify the mechanism through which
MVDI decreases IM. The primary candidate mechanisms (assuming an inverse relationship be-
tween IM and MV) include an increase in food consumption by mothers in subsistence house-
holds, an increase in income by farming households, and a decrease in food prices overall. We
explore these mechanisms by way of heterogeneity analysis in Section 3.2.

We further explore whether the effect of MV on IM varies among the world regions repre-
sented in our sample. Table 3 compares estimates separately derived in different world regions,
using the Earthstat 1961–1965 crop mix specification. Three regions exhibit negative and statis-
tically significant results: Latin America, Africa (whether defined as sub-Saharan Africa or as
sub-Saharan African with North Africa), and South Asia (see Table A2 for the full list of coun-
tries included in the sample). The magnitude of the effect is larger in Latin America (∼2.5x) and
South Asia (∼3x) than in Africa. In Latin America and especially in Africa, the beneficial effect
of MVDI on infant health is mostly evident in the case of male infants, while in South Asia the
effect appears stronger in female infants. South and Southeast Asia (SSEA) grouped together
do not show a significant association of MVDI with a reduction in infant mortality, although
the point estimate for the pooled sample is almost identical to the more precisely estimated
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coefficient for sub-Saharan Africa.

3.1.1 Results by Child Sex

Across all three crop datasets, the estimated impact on IM among female infants is smaller in
magnitude than the pooled effect across sexes and is statistically insignificant (panel B). Mor-
tality among male infants, on the other hand, displays a larger and highly significant association
(panel C). Coefficient estimates imply that males born when MVDI in their cluster is one stan-
dard deviation higher than the national trend benefit from a 1.4–1.9 percentage point reduction
in IM risk (as compared to an average IM of 11% across the entire sample of males). These re-
sults suggest that if MVDI does in fact improve infant health, whether through increased caloric
intake or higher incomes, the effect is greater among male than female infants.

To test whether the sex-differentiated salubrious effects of MVs occur in utero, we estimate
the impacts of MVDI on the infant male-to-female sex ratio of the children in the sample (i.e.
live births), but find only weak evidence of an increase in male births (Table A4).

We explore heterogeneity by child sex by undertaking two approaches. First, we examine
the pattern in the marginal effect of MVDI across child sex according to each country’s Gender
Parity Index (World Bank, 2015). The GPI is calculated as the ratio of girls to boys enrolled
at primary and secondary levels in public and private schools, such that values closer to 1
represent more parity. We take the average GPI from 1970-2000 for the countries in our sample
and classify the countries as high or low gender parity depending on whether they fall above
or below the median (the median value of GPI is 0.74). After dividing the sample according
to the median GPI threshold, we test whether the marginal effect of MVDI exhibits the same
patterns by child sex across low-parity and high-parity countries. Table 4 shows the results,
weighing observations so that coefficients represent the marginal effect in the average country.
Two aspects of these results are particularly relevant. First, column (1) shows that the main
effect of MVDI on infant mortality is present in both low- and high-GPI groups. Column (2)
shows that a salubrious effect of MVDI on infant mortality risk among girls is evident only
in countries with relatively more gender parity. This supports the idea that a discriminatory
mechanism partly explains the different impact of MVDI across boys and girls. Column (3)
makes it clear that the benefit of MVs on boys is consistent across countries, regardless of their
GPI.

Given that GPI is correlated to region (Latin America is high-GPI and South Asia is low-
GPI) we look for further evidence of a GPI gradient in the marginal effect of MVDI by looking
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only within one region. The only region in the sample with enough countries to measure the
marginal effect of MVDI across low-GPI and high-GPI groups is sub-Saharan Africa. We divide
the countries in the region by the median 1970-2000 average GPI, and produce the results in
Panel B of Table 4. Within sub-Saharan Africa, the pattern of MVDI marginal effect remains.
All countries demonstrate strong marginal effects of MVDI regardless of GPI in the case of
boys and the pooled sample. The sign and magnitude of the coefficients on girls suggests
that MVDI may have an effect on girls only in high GPI countries, but it is not statistically
significant. While these results suggest that gender discrimination may have a role in explaining
the different effects between boys and girls, the statistical pattern is not strong.

We conclude that while there is some evidence the marginal effect of MVDI on girls follows
a gradient consistent with gender discrimination, the evidence is not statistically definitive. The
GPI gradient for the marginal effect of MVDI is only observed globally, where it might be
confounded with heterogeneous effects across regions for other reasons. Meanwhile, the effect
on boys is remarkably consistent across these tests and across variation in gender parity, giving
support to the underlying biological difference between males and females as the mechanism.

3.1.2 Within-Parity and Within-Mother Estimates

We use two approaches to further bolster confidence in the causal identification of an effect of
MV on IM in our model. First, Table A5 Column 1 estimates a model that includes a flexible
control for the birth order of each child (fixed effects for birth order). This test is motivated
by evidence of linkages between resource allocation to children and their birth order in some
developing country contexts.11 The resulting estimates are almost unchanged from those in the
main analysis in Table 2, showing no evidence of preference by birth order.

Secondly, Column 2 reports estimates from a highly demanding model that includes mother
fixed effects. Including these fixed effects is equivalent to comparing only children born to
the same mother, thus separating the impacts of MVDI from all observable and unobservable
maternal characteristics that are time-invariant. Remarkably, the basic results of the model
remain qualitatively unchanged in this highly stringent specification. The coefficients on pooled
genders and on males remain negative, although they are smaller in magnitude compared to the
main results, and imprecisely estimated. In the case of males the coefficient remains statistically
significant.

11Preferential allocation of resources to children within a family may depend on the gender as well as the birth
order (Jayachandran and Pande, 2017).

18



3.2 Potential Mechanisms

3.2.1 Heterogeneity by Socioeconomic Characteristics

Where the goal is to inform policy, it is highly relevant to understand whether the benefits of
MVDI tend to accrue to poorer households as well as wealthier ones. To elucidate this issue, we
estimate regressions that examine differences in the impact of MVDI on IM on households that
differ in whether the mother engages in agricultural wage labor, whether the mother is illiterate,
and a poverty score. Table 5 reports estimates of these regressions for all children (top panel),
females (middle panel) and males (bottom panel). Each column in each panel reports the results
of a separate regression that uses the poverty characteristic reported at the top of the column,
and reports the point estimates of MVDI (corresponding to the coefficient γ, the characteristic
in question δ, and their interaction θ).

As before, the coefficients of MVDI on all children and on males are all negative. In ad-
dition, and predictably, the coefficients on the poverty characteristics are all positive and sta-
tistically significant, indicating that infants born to mothers with the characteristics considered
here are at higher risk of mortality. Most importantly for this discussion, the coefficients on the
interaction terms are also all negative and almost all statistically significant, indicating that in-
creases in MVDI are likely to lead to larger declines in IM in poorer households. For example,
the results reported in column 1, top panel, indicate that while having 10% more crops planted
to MVs reduces IM by 0.7 percentage points for women who are not engaged in agricultural
wage labor, the decline is larger by 0.3 percentage points for women who are (a total effect of
0.695 + 0.295 = 0.99 percentage points).

3.2.2 Heterogeneity by Distance to Cities

As discussed in the main text, our identification strategy only measures impacts of MVDI that
occur due to increases in farmers’ consumption and incomes or because of localized reductions
in food prices. As food production increases with the diffusion of MVs, food prices are likely to
decline less in places with access to large markets, and decline more in places where transport
costs to markets are high (if the food must be sold in local markets, the price effects of large
production increases are likely stronger). While these price decreases may reduce incomes for
some farmers, they lead to improved welfare for the rest of the population. Our setup does not
allow us to formally test whether the price mechanism is an important driver of the mortality
reduction. However, we examine heterogeneity in MVDI impacts related to the degree of market
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connectivity by way of illustrating the potential role of price effects. We test this by comparing
the impacts of MVDI in areas near to urban centers to those that are farther away.

Table A6 reports estimates of a regression that includes the interaction of MVDI with a con-
trol for distance to urban centers. Column 1 uses the distance to urban centers with population
exceeding 500,000 people, while column 2 uses distance to urban centers exceeding 1 million
people. The interaction terms are negative (for the full sample and for males), indicating that
effects of MVDI on IM are stronger farther away from cities, where markets are more likely to
be disconnected and price effects are stronger. In the case of male children, for which the inter-
action term is more precisely estimated, every 100 km increase in distance increases the effect
size of MVDI by around one-fifth. While these results cannot establish that a food price mech-
anism is a partial driver of mortality declines, they are consistent with such an interpretation. It
is important to clarify that distance to cities is likely to be correlated to a range of other char-
acteristics that may influence the impact of MVs on IM, so these results should be interpreted
with some care and should only be viewed as an illustration of heterogeneous effects.

3.2.3 Effect on Malnutrition

As a test of whether the diffusion of modern varieties reduced infant mortality by improving
child nutrition, Table 6 reports estimates of the association between the MVDI and four mea-
sures of undernutrition: severe stunting (defined as being more than three standard deviations
below the age-specific mean of height-for-age), severe wasting (three standard deviations be-
low median weight-for-height), severe underweight (three standard deviations below median
weight-for-age), and low birthweight (less than 2,500 grams). The sample of children is smaller
than the main sample because anthropometric measures are only measured for children that are
younger than five years at the time of the survey.

The results suggest a negative association between MVDI and malnutrition indicators in
eleven of twelve specifications. We note that these estimates are underpowered, since they are
limited to one decade of data (DHS surveys began in the early 1990s, and this analysis ends
in 2000 with the MV data). In the case of severe stunting, results are statistically significant
for two of the three crop maps, and magnitudes indicate that as a location’s MVs increase by
10 percentage points, children’s risk of being severely stunted in that area decreases by 6–7
percentage points (using the EarthStat 2000 or 1961-1965 crop maps in columns 1 and 3). The
coefficient on the MVDI constructed with the SPAM dataset (column 2) is also negative, but is
smaller in magnitude and not statistically significant. Results are underpowered for the other
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malnutrition indicators due to the short time span and smaller sample size of anthropometric
data, but the consistently negative association suggests that increases in MVs improved the
nutritional status of children.

3.3 Robustness Tests and Additional Analysis

We conduct a variety of robustness tests in order to further scrutinize the causal interpretation of
the results. First, we ascertain that results are not sensitive to different sampling weight choices.
Secondly, we account for the expansion of public health services that was underway during
the study period. Thirdly, we consider the possibility that unobserved localized trends of both
agricultural and non-agricultural economic growth could be driving the correlation between MV
and IM. Fourthly, we show robustness to working with two alternative versions of the MVDI.
Next, we test whether effects of MVDI are evident when looking only at years around the
arrival of MVs. Further, we examine sensitivity to including migrants in the estimating sample.
Finally, we conduct two placebo tests by both checking effects in urban areas and subjecting
the model to randomization tests. Figure A6 summarizes the various estimates obtained from
robustness checks.

3.3.1 Sampling and Population Weights

The main results presented in Table 2 represent the average treatment effect of MVDI among
the children in our sample. However, if the impact of MV on IM varies in ways that correlate
with sampling design, our results would not be representative for all children in our sample
countries if we do not explicitly take into account the sampling procedure within each country,
and adjust for population across countries. This consideration leads some scholars to provide
weighted estimates when using multi-country and multi-survey DHS data (Vollmer et al., 2014;
Burke et al., 2015; Vogl, 2016; Burke et al., 2016; Heft-Neal et al., 2018). However, the use
of weights does not resolve concerns over heterogeneous treatment effects, nor is the choice
of weights obvious. DHS sampling weights are only designed to achieve representativeness
within a particular country and survey round, rather than across countries or across surveys,
leading some scholars to prefer reporting unweighted estimates (Baird et al., 2011; von der
Goltz and Barnwal, 2019). Moreover, our exercise uses a subsample (rural mothers who report
to have never moved), which further complicates the question on how to use the weights to draw
population-level inference.
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Nevertheless, we test the sensitivity of our results to including weights defined based on the
sample principles applied in similar papers that use multi-country DHS data. Table A7 presents
the same specification as Table 2, but now weighing observations by the product of the DHS
sampling weights and a population adjustment factor (equal to the country’s rural population,
N r

c , divided by the country sample size in our regressions of mothers in rural areas who have
never moved, nr

c). Note that the denominator in the weight is the sample size across all the DHS
surveys for that country,

∑
s nc, which adjusts the weight for the fact that countries have had

different numbers of DHS surveys. Since we are using the rural subsample of the DHS in each
country, we re-center the DHS sampling weights in each country-survey year to return them to
mean one, h′, as in DHS survey weights. Thus the weights used are w = h′ ×N r

c /
∑

s n
r
c.

The results obtained from weighted regressions shown in Table A7 are qualitatively very
similar to the unweighted results in Table 2. The estimates in columns 1 and 3, from EarthStat
2000 and EarthStat 1961-1965, are similar in magnitude and always larger than those in Table
2, as well as statistically significant. The coefficient estimates in column 2, using the SPAM
2000 data, retain a negative sign, but are smaller in magnitude than their analogues in Table
2, and are not statistically significant. Nevertheless, the similarity between the weighted and
unweighted results for two of the crop maps suggest that our main results are robust to using
sample weights. Given the methodological uncertainty in the literature over the appropriate use
of weights in multi-country DHS data, we opt for presenting the unweighted results as the main
result in the paper.

3.3.2 Expansion of Public Health and Maternal Education

Improvements in maternal education as well as increases in access to public health services (ma-
ternal, neonatal and child health interventions in particular) are leading determinants of infant
mortality reductions (Cutler et al., 2006). This study of the effect of MVDI on infant mortality
does not in any way contradict the importance of these factors. However, since access to public
health services and to education increased over the period of our analysis, it is important to note
that a correlation between the sub-national diffusion of MVs and public health or education
could potentially bias our estimates. We therefore explore whether there is reason to suspect
bias.

While the DHS records public health indicators, they are only available at the time of sur-
vey, so that we cannot correctly assign to each child the health services accessible by the mother
when the child was born. Given this constraint, we address the issue in two ways. First, we use
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DHS data to construct cluster-level indicators of access to maternal health services at time of
survey, and directly test for correlation of these indicators with MVDI at the cluster level. Es-
timates of regressions are reported in Table A8 for each of the three global crop maps used in
the analysis. There is no indication of a systematic association between the health measures in
question and MVDI. Antenatal care is the only measure that shows a positive association with
MVDI in two out of three crop maps. Other coefficients reflect mostly insignificant associations
that vary in sign across crop maps and public health measure. Note that even an association be-
tween MVDI and a measure of public health would not invalidate our approach, since improved
health behaviour could itself be an outcome of increased crop productivity and income. In this
sense, the test is too strong.

3.3.3 Accounting for Local Patterns of Economic Growth

Another potential threat to causal interpretation of our results lies with the possibility that sub-
national improvements in both MV diffusion and IM could both be driven by localized variation
in the rate of economic development that does not arise from the diffusion of MVs. If for such
extraneous reasons, incomes increased at higher rates in certain subnational regions, one might
be concerned that they lead to both declines in IM as well as higher ability to invest in improved
seeds and associated inputs. This could lead us to incorrectly infer a causal connection between
the two variables.

Local incomes are not observed during our study period at the required spatial and temporal
resolution, making it difficult to fully account for this possibility. However, we subject our
model to several robustness tests. The first test adds sub-national administrative region by
year fixed effects, which tests whether changes in MVDI rates across clusters in the same sub-
national region are correlated with rates of change in IM, relative to the sub-national flexible
trend in mortality. The result is reported in column 1 of Table A9, and shows that point estimates
are similar to those estimated in the baseline specification.

The second test is defined in equation 5, in which we control for interactions between
country-specific flexible time trends and geographical attributes of each location that are of-
ten predictive of economic growth, namely distance to the coast and distance to cities. The
results, reported in column 2 of Table A9, are nearly identical in size and significance to those
obtained in Table 2.

A similar potential concern is that the local crop mix itself could have an impact on declines
in IM that is not due to the diffusion of MVs, but some other attribute of the crop mix that
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leads to increased agricultural development or income growth. For example, one might imagine
that differing trends in the global prices of specific crops create different trends in incomes for
some locations. If such price trends were correlated with MV diffusion rates across crops, the
observed effect on IM might be due to price changes rather than by MV diffusion. Column 3
adds interactions between each crop’s area share and crop-specific year fixed effects, as well as
interactions between each crop’s area share and crop-specific country fixed effects. The broad
pattern of the result remains unchanged. We also test for robustness of our estimates to the
inclusion of interactions between flexible country-specific time trends and the relative areas of
each crop, as shown in equation 6. The results, reported in column 4 of Table A9, are again
very similar to those obtained from the basic model in Table 2.

3.3.4 Alternative MVDI

We present results from two alternative constructions of the MDVI, described in more detail
above, as described in section 2.2.2. Table 7 reports estimates of the effect of MVDI on IM using
a version of the MVDI constructed using the regional averages of each crop’s MV diffusion,
while excluding the country itself. We run three versions of the “leave one out” test in which
the alternative MVDI is constructed using either (1) all neighbouring countries; (2) all countries
in the region; or (3) all countries in the global sample (always leaving the country in question
out of the average). This provides a more exogenous proxy of MV diffusion since it does not
allow country-specific factors affecting both MV diffusion and health improvements to enter
the MVDI construction. The estimates in columns 2-4 are from a stringent specification that
also controls for regional trends in crop area, in an analogous way as was discussed in Table A9.
The results show that the impact of MVDI remains similar in size and as statistically significant
as in the original benchmark estimation in Table 2 (replicated in Table 7, column 1). Results are
very stable across the three different ways of choosing the group of countries used to construct
the alternative MVDI. We present the more conservative results in Table 2 as our preferred
estimates.

As discussed earlier, an implicit assumption in the construction of MVDI is that that all
parts of a country growing a particular crop receive the same dose of crop-specific national
MV. Table A10 reports estimates of the effect of MVDI on IM using an Adjusted MDVI which
spreads MVs subnationally for a given crop towards areas where that crop is a larger share of
area planted than other crops in the analysis. The skew of MVs towards high crop share areas is
set to follow the pattern observed in India in Figure A4. Column 1 reports the results in Table 2
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obtained with the original MVDI built with EarthStat 1961-1965 data, while column 2 reports
results obtained with the adjusted MVDI (also built with EarthStat 1961-1965 crop areas). The
results show that the effects of MVDI on infant mortality are very similar in magnitude and
significance across the two versions of MVDI.

3.3.5 Years around MV arrival

In order to test the effect of MV arrival using cohorts of children as similar as possible, we
restrict the sample to 10 and 15 years within first adoption in panels A and B, respectively, and
define the “moment of MV adoption” at the cluster level in three different ways: MV > 0% in
column 1, >5% in column 2 and >10% in column 3. We focus on the subsample of boys given
that the estimated MVDI impact is strongest on them.

The estimates are shown in Table A11. Estimates in Panel A are smaller and not always
statistically significant, but we note that the sample is reduced in size by 55-65% (compared
to N = 297,326 for boys using EarthStat 1961-1965 in Table 2). Estimates in Panel B (with a
larger sample size) are more similar to our full sample estimates, and statistically significant in
Columns 1-3. The point estimate when limiting the data to 15 years of arrival and a threshold
of 10% of MVs is identical to the analogous coefficient in the main result, despite employing
only about 60% of the data.

Overall, these specifications limiting the sample to the years around first arrival of MVs in
a DHS cluster show very similar patterns compared to using all of the data.

3.3.6 Including Migrants

The main regressions are estimated using the sample of women who have never migrated, in
order to ensure the historical MVDI in their location accurately reflects the circumstances ex-
perienced during early life stages of their children. As a robustness test, we also estimate our
model on the full DHS sample. The results, reported in Table A12, are smaller in magnitude,
but retain the same pattern (and statistical significance in the case of Earthstat 1961-1965 data)
of those obtained with the sample of non-migrants. Note that the smaller magnitude of the co-
efficients is consistent with the measurement error that may result from incorrectly assigning
the MVDI in the current cluster of residence to the MVDI exposure of children born before the
migration occurred.
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3.3.7 Urban Areas

All estimates reported thus far were obtained by using the rural sample of the DHS. While the
DHS does not directly report whether a household is engaged in farming, it does distinguish
between rural and urban settlements. Urban households are less likely to be engaged in farm-
ing, making it less likely that their incomes will rise as a result of the diffusion of MVs in their
areas. In addition, since markets near urban centers are likely to be well connected, the dif-
fusion of MV in the local area is also unlikely to reduce food prices in relation to other urban
areas. Finally, urban areas are likely to have far less cropland, such that a percentage change
in MVDI is likely to have a small effect on overall food availability for the urban population.
It is therefore less likely that MVDI will affect IM for urban households in ways that will be
captured by our analysis. Estimating the association in the urban sample therefore provides a
kind of “placebo test” for the overall model and estimation approach. Estimates obtained for
the rural and urban sample are reported side by side in Table A13 and confirm this prediction:
no significant association is detected between MV and IM in the urban sample, and the point
estimates are significantly smaller.

3.3.8 Randomization Tests

As a further test against the possibility that our results are driven by spurious associations or
the structure of the data, we conduct two randomization tests. The first re-estimates the main
model after random assignment of MDVI values across clusters within a country. The second
randomly re-assigns the MV variable across crops within a country in order to construct a
placebo MVDI that replaces the MVDI variable in equation 4. Figure A5 plots the distribution
of the coefficient estimates from 10,000 reshufflings, in comparison to the estimate obtained
by using the actual MVDI values. The vertical line indicates that actual estimate of γ obtained
by using the EarthStat 1961-1965 cropped area dataset (reported in Table 2). The distribution
of γ is centered close to zero, as would be expected, and indicates that the likelihood that our
point estimate could have resulted by chance is unlikely (p<0.001 for the randomization across
clusters, and p<0.05 for the randomization of MV data across crops).

3.3.9 Recall Bias

The DHS interviews mothers up to the age of 49, meaning that some mothers may be required
to recall births that took place decades before the time of the survey. The timing and survival
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status of past births are highly salient events in a mother’s life, suggesting that recall errors are
less likely to be a concern than for other types of recalled data. This is especially true since
our research design only relies on accurately placing the year of birth within 5-year intervals.
Moreover, errors in recalling the survival status of past births could only potentially bias our
estimates if it is systematically correlated with variation in IM or MV trends within countries.
Nevertheless, it is worth considering whether errors in recalling the timing or survival of distant
past births could bias our findings.

We conduct several direct tests of the possibility that recall error can be affecting our esti-
mates. First, we re-estimate our regression while limiting the sample to sub-samples in which
recall bias is less likely to occur and examine whether the estimates are substantially affected.
We report the resulting estimates in Table A14. In panel A, we limit the sample to births that
occurred in the latter half of our study period, i.e. post 1980. In panel B we limit the sample
to mothers who were below 40 years of age when they were surveyed (Khatun et al., 2018;
Espeut and Becker, 2015; Beall and Leslie, 2014). In panel C we limit the sample to educated
mothers, who are less likely to commit recall error (Beall and Leslie, 2014). In panel D we
limit the sample to births occurring less than 20 years before they are reported in the survey. All
four resulting sets of estimates are similar in statistical significance, direction and magnitude to
our benchmark results obtained with the full sample. This similarity provides strong evidence
against the possibility that recall bias may be affecting our results. In panels E and F we per-
form two additional tests in which we directly control for the recall year or the recall period,
respectively, in the regression (Khatun et al., 2018). In panel G we weigh observations inversely
to their length of recall. Once again, the estimates remain very similar to our benchmark results,
further strengthening our confidence that recall error is not affecting our results.

3.3.10 Pre-trends and other Threats to Identification

Recent work on Bartik instruments has identified two threats that are relevant in the case of
MVDI (Goldsmith-Pinkham et al., in press). First, the initial cropping pattern may be correlated
with other outcome variables, such as age and education of the mother, which may in turn affect
infant mortality. We address this concern by controlling for mother’s age in our regressions
(Table 2) and by running regressions that only compare siblings and thus eliminate any effect
of time-invariant characteristics of the mother (Table A5).

A second threat relates to concerns about different pre-trends in infant mortality. Table
A15 tests whether trends in infant mortality differ between DHS clusters that will eventually
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experience an increase in MVs to those that will not, even before MVs begin to diffuse. The
test involves regressing the residuals from the main specification in Table 2 on future MVDI
(next time period) (Goldsmith-Pinkham et al., in press). The estimated coefficient is statistically
insignificant, meaning that there is no evidence of differences in pre-trends in the IM variable
in areas that will adopt more MVs in the future compared to areas that do not.

4 Conclusion

In the year 2000, around 114 million children were born per year in the developing world
(United Nations Population Division, 2015), while the population-weighted average of crops
planted to MVs was 63%. If our estimated effects of predicted local MV diffusion apply to
the entire population, they would suggest that this level of MV diffusion and associated Green
Revolution technologies reduced the infant mortality rate by 2.4–5.3 percentage points, which
translates into around 3–6 million infant deaths averted per year by the year 2000. An impor-
tant caveat is that our estimates are derived from the sample of rural families who have never
migrated, and we cannot directly test whether these generalize to all families.

If the average MV diffusion rate in SSA went up from around 30% in 2010 (Walker and
Alwang, 2015) to South Asian levels (around 60%), our estimates using MVDI (EarthStat 1961-
65) imply that IM would decline by 6.24 per 1,000 live births if the treatment effects of broader
adoption in SSA followed the effect observed so far from limited adoption in SSA (Table 3,
Column 3), and by 20.04 if the effects were more akin to the global average (Table 2, Column
3). The former estimate can be interpreted as providing a lower bound, for instance, assuming
persistence in the lack of complementary inputs in SSA, when compared to the global average.

At the global level, our estimates imply that an increase in MV adoption from 0 to 50%
leads to a decline in IM by 33-36 deaths per 1,000 children. For comparison, Bharadwaj et al.
(2020) estimate it to be 15 deaths per 1,000 children using data from India, and Gollin et al.
(2018) find it to be about 45 deaths using data from 87 countries. The fact that our estimate
is between the magnitudes of two other papers that use different methodologies and a different
sample of countries strengthens the claim of a generalized result between MV diffusion and
infant mortality.

Three comments on the interpretation of these results are in order. First, since our estimates
are based on differences in the rates of IM declines across DHS clusters in the same country,
they can only capture those impacts of MV diffusion that are localized in nature. For example,
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the impacts of uniform declines in food prices across an entire country would be “missed” by
our analysis. Only localized relative changes in income and food prices would be captured,
meaning our analysis may under-estimate the true impact. We note, however, that imperfect
market linkages in developing countries make spatially localized effects on prices quite likely
(Van Campenhout, 2007; Gonzalez-Rivera and Helfand, 2001; Ravallion, 1986).

Second, our indicator tracks replacement of traditional crop varieties with modern varieties.
Additional crop yield and human welfare benefits would be expected as more advanced modern
varieties replace earlier MVs, but our approach only measures the average health impact across
all types of modern varieties adopted.

Third, and most importantly, adoption of MVs often went hand in hand with the spread of
other complementary technologies to boost productivity, including fertilizers, irrigation, and
pest control (Pingali, 2012), and our estimate of the effect of MV diffusion implicitly includes
the effect of adopting these approaches along with MVs. Our findings therefore cannot be
read to indicate that MVs should be promoted at the expense of other agricultural technologies.
Rather, they speak to the importance of supporting productivity in agriculture as a means of
improving lives in developing countries, including the lives of the poor in rural areas. As such,
they can inform the recent debate about whether investing in increased smallholder agricul-
tural productivity is an effective strategy for economic development, health improvement, and
poverty alleviation in sub-Saharan Africa (Collier and Dercon, 2014; Dercon, 2009). They also
suggest that it is reasonable to view with some alarm the steady decline in funding for cereal
crop improvement over the last few decades in sub-Saharan Africa, the continent with least
diffusion of MVs (Beintema and Stads, 2006; Walker and Alwang, 2015).

Some scholars have emphasized potentially negative impacts of the Green Revolution on
dietary diversity and a range of environmental outcomes that influence human welfare, argu-
ing that strategic re-evaluation of research and development (R&D) priorities for agriculture is
warranted (DeFries et al., 2015; Pingali, 2012; Murgai et al., 2001; Perfecto and Vandermeer,
2010; Brainerd and Menon, 2014). The improved understanding our results provide of welfare
impacts of MV adoption can further help to more accurately weigh benefits and drawbacks of
agricultural technologies. While recent discussions of malnutrition rightly emphasize the im-
portance of micronutrient supplementation and production (DeFries et al., 2015), our estimates
provide compelling evidence that the health benefits of broad-based increases in agricultural
productivity should not be overlooked. From the policy perspective, government subsidy for in-
puts leading to a green revolution as well as investments in extension and R&D programs seem
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to be important. Even temporary subsidy programs to stimulate Green Revolution technology
adoption may bring in high returns, when they have lasting impact on adoption by farmers
(Carter et al., 2019).

The health effects of MV diffusion appear to differ substantially based on the sex of the in-
fant, consistent with other evidence of sex-specific effects of income shocks on children (Mulmi
et al., 2016; Maccini and Yang, 2009). This gender disparity could reflect both socioeconomic
and biological factors. One possibility is that parental discrimination in resource allocation is
driving the results. Alternatively, infant males may benefit disproportionately from higher ma-
ternal and infant caloric intake due to biological characteristics that contribute to underlying
differences in IM rates between the sexes. Identifying which of these mechanisms is at work
remains an important avenue for future research.

Our results provide strong evidence for the health benefits of agricultural productivity growth.
The substantial decreases in mortality that we observe also likely reflect health improvements
among the population of surviving infants, although these gains are less readily observable.
Continued investments in agricultural research and development as well as in the diffusion of
existing MV varieties may lead to substantial human welfare benefits in areas where MV dif-
fusion (Evenson and Gollin, 2003a; Walker and Alwang, 2015), input intensity (Mueller et al.,
2012; Lassaletta et al., 2014), and crop productivity (van Ittersum et al., 2016, 2013; Mueller
et al., 2012) remain low. Targeting efforts using new geospatial estimates of malnutrition preva-
lence (Osgood-Zimmerman et al., 2018) may provide an even larger impact. Further agricultural
research will also be needed to minimize the potentially adverse effects of more intensive culti-
vation on local environmental quality and dietary diversity. These insights will be a key part of
ending hunger and raising agricultural productivity and incomes of small-scale food producers.
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Figures

Figure 1: Spatial distribution of infant mortality data from the Demographic and Health Surveys

Note: Dots represent the locations of Demographic and Health Survey clusters used in the analysis (N = 21,604
clusters across 37 developing countries).
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Figure 2: Constructing the modern crop variety diffusion indicator (MVDI) for Nigeria
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Note: In each location, country-level crop specific modern variety diffusion data Evenson and Gollin (2003a) is
combined using the local crop mix, obtained from global, spatially precise crop map datasets. MVDI represents
the fraction of local crop harvested area allocated to a modern variety.
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Figure 3: Historical changes in the Modern Variety Diffusion Indicator (MVDI) using EarthStat
2000 crop areas at three points of time

Note: Here we visualize changes in MVDI for all 86 countries where MV data are available, but note that not all
countries are included in the estimating sample because they lack georeferenced DHS data.
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Tables

Table 1: Summary Statistics
Mean Std.Dev. Obs

Year 1989.02 7.71 612,031

Outcome

Infant Mortality: All 0.10 0.30 612,031

Infant Mortality: Girls 0.10 0.29 297,872

Infant Mortality: Boys 0.11 0.31 314,159

Treatment

Earthstat (circa 2000) 0.14 0.17 597,251

SPAM (circa 2000) 0.13 0.18 577,101

Earthstat (1961-65) 0.18 0.21 581,494

Controls

Sex ratio 0.51 0.50 612,031

Mother’s age at birth 24.27 6.16 612,031

Not literate 0.69 0.46 467,776

Wage workers in agriculture 0.09 0.28 571,766

Rural poverty index 0.01 0.59 591,109
Note: Data come from rural clusters in 37 countries where DHS geocoded data and MV data are available. The
number of observations (N=612,031) refer to the union of estimating samples (EarthStat 2000, EarthStat 1961–65
and SPAM 2000).
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Table 2: Impact of modern varieties on infant mortality
(1) (2) (3)

EarthStat
(circa 2000)

SPAM
(circa 2000)

EarthStat
(1961-1965)

Panel A: All Children
MVDI -0.0752 -0.0663 -0.0668

(0.0302)** (0.0200)*** (0.0208)***
[0.0325]** [0.0206]*** [0.0226]***

N 597,247 577,101 581,490
Mean .1 .1 .1

Panel B: Females
MVDI -0.0411 -0.0407 -0.0277

(0.0370) (0.0277) (0.0279)
[0.0391] [0.0291] [0.0285]

N 289,183 279,563 281,724
Mean .096 .095 .097

Panel C: Males
MVDI -0.0922 -0.0844 -0.1090

(0.0384)** (0.0228)*** (0.0244)***
[0.0398]** [0.0231]*** [0.0247]***

N 305,379 295,014 297,236
Mean .11 .11 .11

Note: Each estimate in Table 2 represents γ from the following estimating equation: yivct = γMVDIvct + uv +
Zct +Xivct + eivct where yivct is a binary indicator of infant mortality i.e. whether child i born in year t in DHS
sampling cluster v in country c died in the first year of life; uv are cluster fixed effects and Zct are country-by-year
FE; Xivct includes quadratic in mother’s age (at birth of child) and sex of child; and eivct are idiosyncratic errors.
Columns report estimates obtained through the use of the three global crop map datasets. The sample is restricted
to rural DHS clusters and mothers who report to have never migrated. Standard errors in parentheses are clustered
at the sub-national (admin) level, and square brackets are two-way clustered at the admin and country-by-year
level. Standard errors in parentheses, * p<0.10, ** p<0.05, *** p<0.01.
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Table 4: Heterogeneous effects of MVDI on IM, by gender parity index
(1) (2) (3)
All Girls Boys

Panel A: All Regions
MVDI -0.0583 -0.0103 -0.0896

(0.0208)***(0.0262) (0.0284)***
MVDI × above median GPI -0.0595 -0.1368 -0.0268

(0.0648) (0.0707)* (0.0807)

N 563,820 273,054 288,240
Mean .097 .092 .1

Panel B: sub-Saharan Africa only
MVDI -0.0566 -0.0112 -0.0830

(0.0223)**(0.0278) (0.0313)***
MVDI × above median GPI -0.1114 -0.0976 -0.0970

(0.0654)* (0.0758) (0.1044)

N 308,860 150,729 157,535
Mean .12 .11 .12

Note: Each estimate in Table 4 represents γ and θ from the following estimating equation: yivct = γMVDIvct +
θMV DIvct ×Wvc + uv + Zct +Xivct + eivct where yivct is a binary indicator of infant mortality i.e. whether
child i born in year t in DHS sampling cluster v in country c died in the first year of life; GPIc is equal to one if
country c has above median average Gender Parity Index from 1970-2000 (calculated from World Bank (2015));
uv are cluster fixed effects and Zct are country-by-year fixed effects; Xivct includes quadratic in mother’s age (at
birth of child) and sex of child; and eivct are idiosyncratic errors clustered at subnational (admin) level. MVDI is
calculated using the EarthStat 1961-1965 crop map data. Standard errors in parentheses, * p<0.10, ** p<0.05,
*** p<0.01.

44



Table 5: Heterogeneous impacts of modern varieties on infant mortality, by occupation, educa-
tion and income

(1) (2) (3)
Occupation

(Ag. wage worker)
Education

(Not literate)
Wealth

(Poverty score)

Panel A: All Children
MVDI -0.0695 -0.0401 -0.0702

(0.0239)*** (0.0203)** (0.0210)***
Characteristic 0.0113 0.0131 0.0053

(0.0042)*** (0.0020)*** (0.0013)***
MVDI × Characteristic -0.0295 -0.0185 -0.0056

(0.0109)*** (0.0056)*** (0.0034)*

N 546,618 441,077 562,129

Panel B: Females
MVDI -0.0289 0.0023 -0.0346

(0.0313) (0.0265) (0.0283)
Characteristic 0.0090 0.0128 0.0059

(0.0047)* (0.0025)*** (0.0016)***
MVDI × Characteristic -0.0221 -0.0154 -0.0097

(0.0157) (0.0076)** (0.0044)**

N 265,720 213,285 272,210

Panel C: Males
MVDI -0.1097 -0.0850 -0.1094

(0.0274)*** (0.0271)*** (0.0254)***
Characteristic 0.0135 0.0135 0.0051

(0.0056)** (0.0029)*** (0.0018)***
MVDI × Characteristic -0.0403 -0.0224 -0.0035

(0.0178)** (0.0083)*** (0.0049)

N 279,259 225,396 287,409
Note: Each estimate in Table 5 represents γ, δ and θ from the following estimating equation run for each mother’s
characteristic (occupation, education and income) separately: yimvct = γMVDIvct + δWimvct + θMV DIvct ×
Wimvct + uv + Zct + Ximvct + eivct where yivct is a binary indicator of infant mortality i.e. whether child i
born in year t in DHS sampling cluster v in country c died in the first year of life; Wivct is a characteristic of
the mother interacted with the MVDI; uv are cluster fixed effects and Zct are country-by-year fixed effects; Xivct

includes quadratic in mother’s age (at birth of child) and sex of child; and eivct are idiosyncratic errors clustered at
subnational (admin) level. MVDI is calculated using the EarthStat 1961-1965 crop map data. Wimvct in column
1 is coded as 1 if the mother is an agricultural wage worker, 0 otherwise. In column 2, it is coded as 1 if the
mother is not literate, 0 otherwise. In column 3, Wimvct represents a degree of poverty computed by an index that
includes socio-economic household traits like education, marriage status, type of floor, roof and wall, owernship
of agricultural assets such as livestock, land and animal cart. The score is created only for rural areas and the scale
is reversed so that higher values indicate fewer assets. Standard errors in parentheses, * p<0.10, ** p<0.05, ***
p<0.01.

45



Table 6: Impact of modern varieties on malnutrition
(1) (2) (3)

EarthStat
(circa 2000)

SPAM
(circa 2000)

EarthStat
(1961-1965)

Panel A: Severe stunting
MVDI -0.6708 -0.1923 -0.6124

(0.2608)** (0.1774) (0.3022)**

N 51,520 50,257 50,573
Mean .18 .18 .18

Panel B: Severe wasting
MVDI -0.0440 -0.0864 -0.0401

(0.0724) (0.0517)* (0.0797)

N 53,182 51,809 52,177
Mean .018 .018 .018

Panel C: Severely underweight
MVDI -0.2334 -0.1125 -0.0478

(0.1744) (0.1296) (0.1512)

N 51,520 50,257 50,573
Mean .088 .086 .087

Panel D: Low birthweight
MVDI -0.0312 -0.0913 -0.5816

(0.5509) (0.3515) (0.9205)

N 8,779 8,623 8,634
Mean .12 .12 .12

Note: Each estimate in Table 6 refers to γ from the following estimating equation: yivct = γMVDIvct+uv+Zct+
Xivct + eivct where yivct is a binary indicator of malnutrition i.e. child i born in year t in DHS cluster v in country
c had a height-for-age Z score less than 3 standard deviation below median (severe stunting); weight-for-height Z
score less than 3 standard deviation below median (severe wasting); weight-for-age Z score less than 3 standard
deviation below median (severely underweight); or birthweight was less than 2,500 grams (low birthweight); uv
are cluster fixed effects and Zct are country-by-year fixed effects; Xivct includes quadratic in mother’s age (at birth
of child), sex of child and a dummy for the child’s age; and eivct are idiosyncratic errors clustered at subnational
(admin) level. Columns report estimates obtained through the use of the three global crop maps. The sample is
restricted to rural DHS clusters and mothers who report to have never migrated. Standard errors in parentheses, *
p<0.10, ** p<0.05, *** p<0.01.
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Table 7: Impact of modern varieties on infant mortality using alternative MVDI constructed
with different EGMV averages, controlling for regional geographic trends

(1) (2) (3) (4)
Country
EGMV

Subregional
EGMV

Regional
EGMV

Global
EGMV

Panel A: All Children
MVDI -0.0668 -0.1093 -0.1011 -0.2032

(0.0208)*** (0.0418)*** (0.0632) (0.0958)**

N 581,490 394,564 394,564 394,564
Mean .1 .1 .1 .1

Panel B: Girls
MVDI -0.0277 -0.0626 -0.0537 -0.1211

(0.0279) (0.0491) (0.0754) (0.1035)

N 281,724 191,297 191,297 191,297
Mean .097 .097 .097 .097

Panel C: Boys
MVDI -0.1090 -0.1346 -0.1251 -0.2078

(0.0244)*** (0.0490)*** (0.0764) (0.1174)*

N 297,236 201,740 201,740 201,740
Mean .11 .11 .11 .11

Note: Estimates in Table 7 column 1 represents γ from the following estimating equation: yivct = γMVDIvct +
uv + Zct +Xivct + eivct and those in columns 2-4 represents γ from the following estimation equation: yivct =
γMVDI ′vct + uv + Zct +Xivct +

∑
j αjA

(j)
rt ×CropAreajvc + eivct where yivct is a binary indicator of infant

mortality i.e. whether child i born in year t in DHS sampling cluster v in country c died in the first year of life; uv
are cluster fixed effects and Zct are country-by-year FE;

∑
j αjA

(j)
rt refers to interactions between crop-specific

region year fixed effects A(j)
rt and the cropped area of each crop j in the location in question, for the three crops

in the EarthStat 1961-1965 crop map data (maize, rice and wheat); Xivct includes quadratic in mother’s age (at
birth of child) and sex of child; and eivct are idiosyncratic errors clustered at sub-national (admin) level. MVDI
is calculated using the EarthStat 1961-1965 crop map data, using EGMV from the country the child was born in.
Column 1 reports the estimate from the baseline specification from Table 2. MVDI ′ refers to the adjusted MVDI
that is calculated using subregional EGMV averages excluding the observation’s country (column 2); regional
EGMV averages calculated excluding the observation’s country (column 3); and global EGMV from 86 countries
(column 4). The sample is restricted to rural DHS clusters and mothers who report to have never migrated. Standard
errors in parentheses, * p<0.10, ** p<0.05, *** p<0.01.
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5 Appendix (Online only)

Figure A1: Distribution of child birth years in main results sample
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Note: The sample is restricted to rural DHS clusters and mothers who report to have never migrated.
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Figure A2: Constructing the MV diffusion indicator for Nigeria using SPAM 2000 cropland
areas
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Note: SPAM 2000 dataset from You et al. (2014) includes 10 crops, 5 of which are shown here.
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Figure A3: Constructing the MV diffusion indicator for Nigeria using EarthStat cropland areas
for 1961-1965
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Note: The historical Earthstat dataset from Ray et al. (2012) only includes three crops, and all are shown here.
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Figure A4: Distribution of modern varieties in 2000 in India, by relative crop share

Note: Figure A4 shows the linear fit across districts in India of area planted to MVs in the year 2000 for three crops
(maize, wheat and rice) and the area planted of the respective crop as a share of area planted to the three crops.
The crop area corresponds to the year 1966, the first year for which data is available ICRISAT (2013).
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Figure A5: Randomization tests
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Note: Figure A5 shows distribution of γ estimates after (a) shuffling MVDI across villages while preserving the
temporal order within each country (top panel), and (b) random assignment of EGMV across crops, independently
within each country, before construction of MVDI (bottom panel). The estimate γ is derived from: yivct =
γMVDIplacebovct + uv +Zct +Xivct + eivct where yivct is a binary indicator of infant mortality i.e. whether child
i born in year t in DHS sampling cluster v in country c died in the first year of life; uv are cluster fixed effects and
Zct are country-by-year FE; Xivct includes quadratic in mother’s age (at birth of child) and sex of child; and eivct
are idiosyncratic errors clustered at subnational (admin) level. The sample is restricted to rural DHS clusters and
mothers who report to have never migrated. The distributions reflect 10,000 randomization draws, and vertical line
shows actual point estimate of γ from Table 2 using EarthStat 1961-1965 cropped area dataset. The p-value is <
0.001 and < 0.05.
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Figure A6: Estimated impact of modern varieties on infant mortality across specifications
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Note: Each estimate in Figure A6 represents γ from the following estimating equation: yivct = γMVDIvct+uv+
Zct +Xivct + eivct where yivct is a binary indicator of infant mortality i.e. whether child i born in year t in DHS
sampling cluster v in country c died in the first year of life; uv are cluster fixed effects and Zct are country-by-year
FE; Xivct includes quadratic in mother’s age (at birth of child) and sex of child; and eivct are idiosyncratic errors
clustered at subnational (admin) level. 95% confidence intervals shown. The sample is restricted to rural DHS
clusters and mothers who report to have never migrated. Panel (a) shows estimates using three different crop maps
to construct MVDI and reports estimates by child sex for each crop map. Panel (b) reports estimates for both sexes
and for males from the following variants on the model: weighting observations by the DHS sampling weights
multiplied by the country’s rural population divided by the rural sample size for the country across all DHS survey
rounds; limiting the sample to mothers that report being agricultural wage laborers; limiting to mothers who are
illiterate; controlling for mother’s antenatal care visits, duration of breastfeeding, and child vaccination; detrending
the data as a function of distance to coast; detrending the data according to crop mix; only comparing siblings by
adding mother fixed effects; and constructing the MVDI using average MV diffusion in the country’s region within
the continent, without including the country’s MV in the average.
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Table A1: Country-level associations between MV diffusion and infant mortality
(1) (2) (3) (4)

Panel A: All Countries
MV (11 crops) 52.99 10.80

(18.36)*** (40.04)
MV (cereals) 29.06 -31.20

(13.78)** (34.71)

N 700 700 700 700
Countries 86 86 86 86

Panel B: Geocoded DHS Countries
MV (11 crops) 7.51 65.41

(26.54) (73.59)
MV (cereals) -11.89 12.90

(17.65) (62.92)

N 305 305 305 305
Countries 37 37 37 37
Region × year FE Yes Yes No No
Country specific trends No No Yes Yes

Note: Table A1 presents results for the following estimating equation: yct = γMVct + uc + f(t) + ect where
yct is the infant mortality in country c at time t (number of infants dying per 1,000 births); MVct is the crop area
weighted MV adoption in country c at time t for 11 crops (barley, cassava, groundnut, lentil, maize, bean, millet,
potato, rice, sorghum and wheat) or 5 cereals (maize, millet, rice, sorghum and wheat) Evenson and Gollin (2003b);
uc are country fixed effects and f(t) are region-by-year fixed effects or country-specific linear time trends; and
ect is the idiosyncratic error term that is clustered at country level. Standard errors in parentheses, * p<0.10, **
p<0.05, *** p<0.01
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Table A2: Number of surveys and infants in union of estimating samples, by country
Country Surveys Females Males Total

EAP-Cambodia 2 (2000, 2005) 17,031 17,786 34,817
EAP-Philippines 2 (2003, 2008) 3,771 4,151 7,922
LAC-Bolivia 1 (2000) 2,828 2,889 5,717
LAC-Colombia 1 (2000) 3,638 3,765 7,403
LAC-Dominican Rep. 1 (2007) 6,339 6,758 13,097
LAC-Haiti 2 (2000, 2006) 8,694 9,026 17,720
LAC-Peru 2 (2000, 2005) 16,387 17,157 33,544

NA-Egypt 6
2003, 2005, 2008)
(1992, 1995, 2000,

56,143 60,058 116,201

NA-Morocco 1 (2004) 3,143 3,370 6,513
SA-Bangladesh 3 (2000, 2004, 2007) 4,745 4,891 9,636
SA-India 1 (2016) 12,316 14,092 26,408
SA-Nepal 2 (2001, 2006) 2,633 2,731 5,364
SSA-Benin 2 (1996, 2001) 5,494 5,841 11,335
SSA-Burkina Faso 3 (1993, 1999, 2003) 11,252 11,910 23,162
SSA-Central African Republic 1 (1995) 2,367 2,445 4,812
SSA-Cote d’Ivoire 1 (1994) 2,199 2,181 4,380
SSA-Comoros 2 (1991, 2004) 2,729 2,806 5,535
SSA-Congo, Dem. Rep. 1 (2007) 1,841 2,036 3,877
SSA-Ethiopia 2 (2000, 2005) 17,375 18,758 36,133
SSA-Ghana 4 (1993, 1998, 2003, 2008) 4,981 5,286 10,267
SSA-Guinea 1 (2005) 5,012 5,399 10,411
SSA-Kenya 2 (2003, 2009) 2,632 2,895 5,527
SSA-Liberia 2 (2007, 2009) 2,135 2,338 4,473
SSA-Mali 3 (1996, 2001, 2006) 18,458 19,298 37,756
SSA-Malawi 3 (2000, 2004, 2010) 22,869 23,319 46,188
SSA-Namibia 2 (2000, 2007) 2,842 2,792 5,634
SSA-Niger 2 (1992, 1998) 8,544 8,917 17,461
SSA-Nigeria 3 (1990, 2003, 2008) 17,718 18,704 36,422
SSA-Rwanda 1 (2005) 1,941 1,938 3,879
SSA-Senegal 4 (1993, 1997, 2005, 2009) 13,715 14,321 28,036
SSA-Sierra Leone 1 (2008) 1,504 1,647 3,151
SSA-Swaziland 1 (2007) 538 506 1,044
SSA-Togo 2 (1988, 1998) 3,324 3,427 6,751
SSA-Tanzania 2 (1999, 2008) 2,752 2,702 5,454
SSA-Uganda 2 (2001, 2006) 3,086 3,114 6,200
SSA-Zambia 1 (2007) 1,456 1,395 2,851
SSA-Zimbabwe 2 (1999, 2006) 3,440 3,510 6,950
Total 74 297,872 314,159 612,031

Note: EAP refers to East Asia and Pacific, LAC refers to Latin America and the Caribbean, NA refers to North
Africa, SA refers to South Asia, and SSA refers to sub-Saharan Africa.
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Table A3: Validation of MVDI using subnational data from India
(1) (2)

EarthStat
(circa 2000)

EarthStat
(1961-1965)

Panel A:
MVDI 0.2978 0.4272

(0.0954)*** (0.1130)***

N 2,408 2,408

Panel B:
Adjusted MVDI 0.4060 0.4665

(0.0888)*** (0.1120)***

N 2,408 2,408
Note: Table A3 presents estimates of the regression: MVdt = βMVDIdt + ud + vt + edt where, MVdt is the
area-weighted adoption of modern varieties in district d at time t (constructed using district-level data (ICRISAT,
2013)); MVDIdt refers to either the constructed MVDI variable using Equation 1 in district d at time t (panel
A), or the adjusted MVDI which constructs MVDI such that higher modern variety diffusion Evenson and Gollin
(2003a) is assigned to districts growing relatively larger shares of the crop (panel B); ud are district fixed effects
and vt are year fixed effects; and edt is the idiosyncratic error term that is clustered at district level. MVDI using
EarthStat 2000 areas is only calculated using the five crops available in the Indian administrative data [i.e. j = 5
(rice, wheat, maize, sorghum, millet)]. The definition of MVDI based on EarthStat 1961-1965 areas uses j = 3
(rice, wheat, maize) and is unchanged. Standard errors in parentheses, * p<0.10, ** p<0.05, *** p<0.01.

Table A4: Impact of modern variety diffusion on sex ratio
(1) (2) (3)

EarthStat
(circa 2000)

SPAM
(circa 2000)

EarthStat
(1961-1965)

MVDI 0.0760 0.0217 -0.0240
(0.0348)** (0.0279) (0.0276)

N 597,247 577,101 581,490
Mean .51 .51 .51

Note: Each estimate in Table A4 represents γ from the following estimating equation: yivct = γMVDIvct+uv+
Zct +Xivct + eivct where yivct is a binary indicator of whether child in DHS cluster v in country c born in year t
is a boy; uv are cluster fixed effects and Zct are country-by-year fixed effects; Xivct includes quadratic in mother’s
age (at birth of child); and eivct are idiosyncratic errors clustered at subnational (admin) level. The sample is
restricted to rural DHS clusters and mothers who report to have never migrated. Standard errors in parentheses, *
p<0.10, ** p<0.05, *** p<0.01.
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Table A5: Impact of modern varieties on infant mortality (within parity and within mother
estimations)

(1) (2)

Panel A: All Children
MVDI -0.0675 -0.0344

(0.0211)*** (0.0235)

N 581,490 557,043
Mean .1 .1

Panel B: Females
MVDI -0.0283 0.0182

(0.0280) (0.0396)

N 281,724 240,757
Mean .097 .1

Panel C: Males
MVDI -0.1101 -0.0587

(0.0248)*** (0.0323)*

N 297,236 257,047
Mean .11 .11
Controls Birth order FE Mother FE

Note: Table A5, column 1 represents γ from the following estimating equation: yivct = γMVDIvct + uv +
wo + Zct + Xivct + eivct where yivct is a binary indicator of infant mortality i.e. whether child i born in year
t in DHS sampling cluster v in country c died in the first year of life; uv are cluster fixed effects; wo are birth
order fixed effects (so that only children of the same parity are compared) and Zct are country-by-year fixed
effects; Xivct includes quadratic in mother’s age (at birth of child) and sex of child; and eivct are idiosyncratic
errors clustered at subnational (admin) level. Column 2 represents γ from the following estimating equation:
yimvct = γMVDIvct + um + Zct + Xivct + eivct where all the terms are same as defined earlier with two
exceptions. First, the m subscript has been added to emphasize that child i belongs to mother m. Additionally,
um refers to mother fixed effects (so that only children born to the same mother are being compared). MVDI is
calculated using the EarthStat 1961-1965 crop map data. The sample is only restricted to rural DHS clusters and
mothers who have never migrated. Standard errors in parentheses, * p<0.10, ** p<0.05, *** p<0.01.
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Table A6: Heterogenous impacts of modern varieties on infant mortality, by distance to cities
(1) (2)

Distance to 500k
population cities

Distance to 1m
population cities

Panel A: All Children
MVDI -0.0546 -0.0335

(0.0248)* (0.0199)
MVDI × Distance -0.0048 -0.0115

(0.0042) (0.0041)**

N 580,426 580,426

Panel B: Females
MVDI -0.0354 -0.0060

(0.0284) (0.0221)
MVDI × Distance 0.0031 -0.0075

(0.0050) (0.0048)

N 281,271 281,271

Panel C: Males
MVDI -0.0756 -0.0632

(0.0337)* (0.0308)*
MVDI × Distance -0.0130 -0.0157

(0.0063)* (0.0053)**

N 296,628 296,628
Note: Each estimate in Table A6 represents γ and θ from the following estimating equation run for different
distances separately: yivct = γMVDIvct + θMV DIvct × Wvc + uv + Zct + Xivct + eivct where yivct is a
binary indicator of infant mortality i.e. whether child i born in year t in DHS sampling cluster v in country c
died in the first year of life; Wvc is the time-invariant distance of cluster v in country c from cities of different
population size, either cities with population more than 500,000 (column 1) or distance to cities with population
more than 1,000,000 (column 2); uv are cluster fixed effects and Zct are country-by-year fixed effects; Xivct

includes quadratic in mother’s age (at birth of child) and sex of child; and eivct are idiosyncratic errors clustered at
subnational (admin) level. MVDI is calculated using the EarthStat 1961-1965 crop map data. Distance is measured
in hundreds of kilometers. Standard errors in parentheses, * p<0.10, ** p<0.05, *** p<0.01.

58



Table A7: Impact of modern varieties on infant mortality, weighting observations
(1) (2) (3)

EarthStat
(circa 2000)

SPAM
(circa 2000)

EarthStat
(1961-1965)

Panel A: All Children
MVDI -0.0837 -0.0374 -0.0669

(0.0319)*** (0.0393) (0.0194)***

N 597,247 577,101 581,490
Mean .097 .097 .097

Panel B: Females
MVDI -0.0387 -0.0195 -0.0299

(0.0348) (0.0448) (0.0246)

N 289,183 279,563 281,724
Mean .092 .091 .092

Panel C: Males
MVDI -0.1080 -0.0414 -0.0933

(0.0454)** (0.0526) (0.0266)***

N 305,379 295,014 297,236
Mean .1 .1 .1

Note: Each estimate in Table A7 represents γ from the following estimating equation: yivct = γMVDIvct+uv+
Zct +Xivct + eivct where yivct is a binary indicator of infant mortality i.e. whether child i born in year t in DHS
sampling cluster v in country c died in the first year of life; uv are cluster fixed effects and Zct are country-by-year
FE; Xivct includes quadratic in mother’s age (at birth of child) and sex of child; and eivct are idiosyncratic errors.
Columns report estimates obtained through the use of the three global crop map datasets. The sample is restricted
to rural DHS clusters and mothers who report to have never migrated. Observations are weighted using the DHS
sampling weights multiplied by the country’s rural population divided by the sample size for that country (across
all DHS surveys) in the regression. Since we are using a subsample of the DHS (rural mothers who have never
migrated), DHS sampling weights in our sample are re-normalized to mean 1. Standard errors in parentheses are
clustered at the subnational (admin) level. Standard errors in parentheses, * p<0.10, ** p<0.05, *** p<0.01.
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Table A8: Association between MVDI and maternal, neonatal and child health interventions at
the DHS cluster level

(1) (2) (3)
EarthStat

(circa 2000)
SPAM

(circa 2000)
EarthStat

(1961-1965)

Panel A: Access to health care
MVDI 0.0244 0.0091 0.1835

(0.1221) (0.0685) (0.1328)

N 1,770 1,749 1,755
Mean .44 .43 .43

Panel B: ANC visits
MVDI 0.8718 0.3201 0.0984

(0.4503)* (0.2896) (0.3325)

N 6,050 5,848 5,903
Mean 2.3 2.3 2.3

Panel C: Institutional delivery
MVDI 0.0342 0.0158 -0.1789

(0.1056) (0.0587) (0.0752)**

N 6,056 5,856 5,909
Mean .27 .27 .27

Panel D: Breastfeeding
MVDI -0.0698 -0.0321 0.0511

(0.0511) (0.0246) (0.0397)

N 6,059 5,860 5,912
Mean .32 .32 .32

Panel E: Vaccination
MVDI -0.0091 0.0309 -0.0356

(0.0557) (0.0219) (0.0505)

N 5,878 5,683 5,774
Mean .81 .81 .81

Note: Table A8 presents results for the following estimating equation: Hvct = γMVDIvct+uc+Zct+evct where
Hvct is a measure of Maternal, Neonatal and Child Interventions (MNCH) in DHS cluster v in country c in survey
year t; uc are country fixed effects; Zct are country× year fixed effects; and eivct are idiosyncratic errors clustered
at subnational (admin) level. In Panel A, access to health care is determined by the fraction of women who reported
that distance was not an obstacle in the use of medical care; in panel B, antenatal care is defined as the average
number of antenatal visits reported by women; in panel C, institutional delivery was defined as fraction of children
who were reported to have been delivered in any kind of health facility; in panel D, breastfeeding is calculated as
the fraction of women who reported to be breastfeeding at the time of survey; and in panel E, vaccination rates
are calculated as the fraction of children who received any vaccination (BCG, TB, DPT, Polio, Measles, etc.). The
estimating sample consists only of rural DHS clusters and the proportions are always calculating after restricting
sample to mothers who reported to have never migrated. Standard errors in parentheses, * p<0.10, ** p<0.05, ***
p<0.01.
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Table A9: Impact of modern varieties on infant mortality, controlling for subnational geographic
trends

(1) (2) (3) (4)

Panel A: All Children
MVDI -0.0836 -0.0762 -0.0470 -0.0621

(0.0236)*** (0.0194)*** (0.0185)*** (0.0270)**

N 579,797 580,426 581,490 581,490
Mean .1 .1 .1 .1

Panel B: Females
MVDI -0.0616 -0.0404 -0.0232 -0.0098

(0.0297)** (0.0273) (0.0246) (0.0379)

N 280,410 281,271 281,724 281,724
Mean .097 .097 .097 .097

Panel C: Males
MVDI -0.1232 -0.1120 -0.0944 -0.1037

(0.0339)*** (0.0244)*** (0.0243)** (0.0327)***

N 295,814 296,628 297,236 297,236
Mean .11 .11 .11 .11
Fixed Effects Admin1 x Year Geography Crop area I Crop area II

Note: Table A9 reports γ from the following estimating equation: yivct = γMVDIvct + uv + Zct + Xivct +
f(t)+eivct where yivct is a binary indicator of infant mortality i.e. whether child i born in year t in DHS sampling
cluster v in country c died in the first year of life; uv are cluster fixed effects; Zct are country-by-year fixed effects;
f(t) refer to additional subnational fixed effects (defined below); Xivct includes quadratic in mother’s age (at birth
of child) and sex of child; and eivct are idiosyncratic errors clustered at subnational (admin) level. Column (1)
adds Admin1 × year FE; column (2) adds Act × DCoast

vc + Bct × DCities
vc where (Act, Bct) and the distance of

each cluster from the coast (DCoast) and from cities (DCities); column (3) add crop area × year FE and crop area
× country FE; and column (4) adds crop-specific country year fixed effects i.e.

∑
j αjA

(j)
ct ×CropAreajvc where

A
(j)
ct refers to the cropped area of each crop j in the location in question, for the three crops in the EarthStat 1961-

1965 crop map data (maize, rice and wheat). MVDI is calculated using the EarthStat 1961-1965 crop maps. The
sample is restricted to rural DHS clusters and mothers who have never migrated. Standard errors in parentheses, *
p<0.10, ** p<0.05, *** p<0.01.
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Table A10: Impact of modern variety diffusion on infant mortality with alternative within-
country MV distribution assumptions

(1) (2)
EarthStat

(1961-1965)
(Equation 1)

EarthStat
(1961-1965)
(Adjusted)

Panel A: All Children
MVDI -0.0668 -0.0700

(0.0208)*** (0.0209)***

N 581,490 581,490
Mean .1 .1

Panel B: Girls
MVDI -0.0277 -0.0371

(0.0279) (0.0291)

N 281,724 281,724
Mean .097 .097

Panel C: Boys
MVDI -0.1090 -0.1040

(0.0244)*** (0.0241)***

N 297,236 297,236
Mean .11 .11

Note: Each estimate in Table A10 represents γ from the following estimating equation: yivct = γMVDIvct +
uv + Zct +Xivct + eivct where yivct is a binary indicator of infant mortality i.e. whether child i born in year t in
DHS sampling cluster v in country c died in the first year of life; uv are cluster fixed effects and Zct are country-
by-year FE; Xivct includes quadratic in mother’s age (at birth of child) and sex of child; and eivct are idiosyncratic
errors clustered at subnational (admin) level. 95% confidence intervals shown. The sample is restricted to rural
DHS clusters and mothers who report to have never migrated. MVDI in (1) assumes that all areas of a country
growing a particular crop receive the respective national EGMV, whereas the Adjusted MVDI in (2) assumes that
relatively more EGMV went to parts of a country cultivating relatively more of the respective crop. Standard errors
in parentheses, * p<0.10, ** p<0.05, *** p<0.01.
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Table A11: Impact of modern varieties on infant mortality in subsamples following MV arrival
(1) (2) (3)

MV>0 MV>5% MV>10%

Panel A:
Within 10 years of MV arrival
MVDI -0.0381 -0.0264 -0.0678

(0.0425) (0.0386) (0.0393)*

N 105,825 123,266 130,718

Panel B:
Within 15 years of MV arrival

MVDI -0.0637 -0.0683 -0.1017
(0.0304)** (0.0286)** (0.0290)***

N 160,720 174,592 176,503
Note: Each estimate in Table A11 represents γ from the following estimating equation: yivct = γMVDIvct+uv+
Zct +Xivct + eivct where yivct is a binary indicator of infant mortality i.e. whether child i born in year t in DHS
sampling cluster v in country c died in the first year of life; uv are cluster fixed effects and Zct are country-by-year
fixed effects;Xivct includes quadratic in mother’s age (at birth of child); and eivct are idiosyncratic errors clustered
at subnational (admin) level. Columns report estimates obtained using EarthStat 1961-65 crop map. The sample
is only restricted to boys born in rural DHS clusters to mothers who have never migrated and with k ∈ {10, 15}
years of MV arrival. Standard errors in parentheses, * p<0.10, ** p<0.05, *** p<0.01.
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Table A12: Impact of modern varieties on infant mortality, including migrants
(1) (2) (3)

EarthStat
(circa 2000)

SPAM
(circa 2000)

EarthStat
(1961-1965)

Panel A: All Children
MVDI -0.0030 -0.0146 -0.0405

(0.0184) (0.0119) (0.0131)***

N 1793575 1720349 1747701
Mean .094 .094 .095

Panel B: Females
MVDI 0.0109 -0.0024 -0.0303

(0.0208) (0.0147) (0.0150)**

N 867,543 832,442 845,492
Mean .088 .088 .088

Panel C: Males
MVDI -0.0133 -0.0272 -0.0527

(0.0223) (0.0145)* (0.0170)***

N 925,198 887,120 901,421
Mean .1 .1 .1

Note: Each estimate in Table A12 represents γ from the following estimating equation: yivct = γMVDIvct +
uv + Zct +Xivct + eivct where yivct is a binary indicator of infant mortality i.e. whether child i born in year t in
DHS sampling cluster v in country c died in the first year of life; uv are cluster fixed effects and Zct are country-
by-year fixed effects; Xivct includes quadratic in mother’s age (at birth of child) and sex of child; and eivct are
idiosyncratic errors clustered at subnational (admin) level. Columns report estimates obtained through the use of
the three global crop maps. The sample is only restricted to rural DHS clusters; the estimating sample includes all
mothers, both migrants and never movers. Standard errors in parentheses, * p<0.10, ** p<0.05, *** p<0.01.
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Table A13: Impact of modern varieties on infant mortality, urban vs. rural locations
(1) (2)

Rural DHS clusters Urban DHS clusters

Panel A: All Children
MVDI -0.0668 -0.0238

(0.0208)*** (0.0337)

N 581,490 170,392
Mean .1 .066

Panel B: Females
MVDI -0.0277 0.0114

(0.0279) (0.0386)

N 281,724 81,931
Mean .097 .06

Panel C: Males
MVDI -0.1090 -0.0572

(0.0244)*** (0.0412)

N 297,236 85,782
Mean .11 .074

Note: Each estimate in Table A13 represents γ from the following estimating equation: yivct = γMVDIvct +
uv + Zct + Xivct + eivct where yivct is a binary indicator of infant mortality i.e. whether child i born in year t
in DHS sampling cluster v in country c died in the first year of life; MVDIvct refers to MV diffusion in cluster
v in country c at time t, derived from the EarthStat 1961-1965 crop map; uv are cluster fixed effects and Zct are
country-by-year fixed effects; Xivct includes quadratic in mother’s age (at birth of child) and sex of child; and
eivct are idiosyncratic errors clustered at subnational (admin) level. Columns 1 and 2 report estimates obtained
from running the regression seperately in rural and urban areas. The sample is restricted to never movers. Standard
errors in parentheses, * p<0.10, ** p<0.05, *** p<0.01.
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Table A14: Impact of modern varieties on infant mortality after accounting for recall bias
(1) (2) (3)

EarthStat
(circa 2000)

SPAM
(circa 2000)

EarthStat
(1961-1965)

Panel A: Births ≥ 1980s
MVDI -0.0740 -0.0596 -0.0547

(0.0345)** (0.0219)*** (0.0276)**

N 522,276 504,983 507,924
Mean .095 .094 .096

Panel B: Young mothers
MVDI -0.0976 -0.0644 -0.0865

(0.0511)* (0.0300)** (0.0409)**

N 363,558 350,176 354,528
Mean .1 .1 .1

Panel C: Literate mothers
MVDI -0.0057 -0.0786 -0.0768

(0.0541) (0.0311)** (0.0476)

N 137,075 134,699 132,963
Mean .072 .073 .073

Panel D: Recall ≤ 20 years
MVDI -0.1088 -0.0732 -0.0933

(0.0404)*** (0.0233)*** (0.0387)**

N 485,534 468,950 473,632
Mean .097 .096 .098

Panel E: Control for recall year
MVDI -0.0752 -0.0663 -0.0668

(0.0302)** (0.0200)*** (0.0208)***

N 597,247 577,101 581,490
Mean .1 .1 .1

Panel F: Recall fixed effects
MVDI -0.0747 -0.0668 -0.0658

(0.0299)** (0.0201)*** (0.0209)***

N 597,247 577,101 581,490
Mean .1 .1 .1

Panel G: Inverse recall weights
MVDI -0.0837 -0.0694 -0.0664

(0.0334)** (0.0238)*** (0.0289)***

N 597,247 577,101 581,490
Mean .1 .1 .1

Note: Each estimate in Table A14 represents γ from the following estimating equation: yivct = γMVDIvct +
uv + Zct +Xivct + eivct where yivct is a binary indicator of infant mortality i.e. whether child i born in year t in
DHS sampling cluster v in country c died in the first year of life; uv are cluster fixed effects and Zct are country-
by-year fixed effects; Xivct includes quadratic in mother’s age (at birth of child) and sex of child; and eivct are
idiosyncratic errors clustered at sub-national (admin) level. Panel A restricts the estimating sample to birth after
1980s (dropping 1960s and 1970s); panel B restricts sample to mothers in the age group 15-40 years at the time of
survey; panel C restricts the sample to mother who are literate; panel D restricts the sample to births that are within
20 years of survey year; panel E adds controls for the distance between the birth year and survey year; panel F adds
a fixed effect for each recall year; and panel G weighs the regression by the inverse of the recall period to reduce
the importance of older births. Columns report estimates obtained through the use of the three global crop maps.
The sample is further restricted to rural DHS clusters and mothers who report to have never migrated. Standard
errors in parentheses, * p<0.10, ** p<0.05, *** p<0.01.
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Table A15: Test for pre-trends
(1)

Future MVDI (t+5) 0.0006
(0.0020)

N 446,151
Note: Table A15 presents the result from regressing residuals from the main estimating equation in Table 2 (using
EarthStat 1961-1965 crop map data) on MVDI in the next time period. Since the MV data is observed quinquen-
nially, future MVDI is defined as MVDI after 5 years after child’s birth. Standard errors in parentheses, * p<0.10,
** p<0.05, *** p<0.01.
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